ImageVerifierCode 换一换
格式:DOCX , 页数:32 ,大小:575.11KB ,
资源ID:869404      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-869404-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教版九年级数学上册第二十三章旋转重点解析试卷(含答案详解).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

人教版九年级数学上册第二十三章旋转重点解析试卷(含答案详解).docx

1、人教版九年级数学上册第二十三章旋转重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在图中,将方格纸中的图形绕O点顺时针旋转90得到的图形是()ABCD2、如图,已知正方形的边长为3,点E是边上一动

2、点,连接,将绕点E顺时针旋转到,连接,则当之和取最小值时,的周长为()ABCD3、下列交通标识中,不是轴对称图形,是中心对称图形的是()ABCD4、如图,在钝角中,将绕点顺时针旋转得到,点,的对应点分别为,连接则下列结论一定正确的是()ABCD平分5、如图,在菱形中,顶点,在坐标轴上,且,分别以点,为圆心,以的长为半径作弧,两弧交于点,连接,将菱形与构成的图形绕点逆时针旋转,每次旋转45,则第2022次旋转结束时,点的坐标为()ABCD6、在平面直角坐标系中,点关于原点对称点在()A第一象限B第二象限C第三象限D第四象限7、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD8、已知点与

3、点关于原点对称,则点的坐标()ABCD9、如图,矩形ABCD绕点A逆时针旋转(090)得到矩形ABCD,此时点B恰好在DC边上,若BBC=15,则的大小为()A15B25C30D4510、如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转90,得到,则点的坐标为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知:,以AB为边作正方形ABCD,使P、D两点落在直线AB的两侧当时,则PD的长为_2、如图,正比例函数 ykx(k0)的图像经过点 A(2,4),ABx 轴于点 B,将ABO 绕点 A逆时针旋转 90得到ADC,则直线 AC 的函数

4、表达式为_3、如图:为五个等圆的圆心,且在一条直线上,请在图中画一条直线,将这五个圆分成面积相等的两个部分,并说明这条直线经过的两点是_4、如图,在平面直角坐标系中,点C的坐标为(1,0),点A的坐标为(3,3),将点A绕点C顺时针旋转90得到点B,则点B的坐标为_5、如图,在ABC中,BAC=90,AB=AC=10cm,点D为ABC内一点,BAD=15,AD=6cm,连接BD,将ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为_cm.三、解答题(5小题,每小题10分,共计50分)1、在中,直线MN经过点C且于D,于E(1)当直线MN绕点C

5、旋转到图1的位置时,求证:;(2)当直线MN烧点C旋转到图2的位置时,求证:;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明2、如图,在边长为1的小正方形组成的网格中,ABC的顶点均在格点上,请按要求完成下列各题(1)以原点O为对称中心作ABC的中心对称图形,得到A1B1C1,请画出A1B1C1,并直接写出点A1,B1,C1的坐标;(2)求A1C1的长3、在RtABC中,ACB90,AC2,ABC30,点A关于直线BC的对称点为A,连接AB,点P为直线BC上的动点(不与点B重合),连接AP,将线段AP绕点P逆时针旋转60,得到线

6、段PD,连接AD,BD【问题发现】(1)如图1,当点D在直线BC上时,线段BP与AD的数量关系为,DAB;【拓展探究】(2)如图2,当点P在BC的延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;【问题解决】(3)当BDA30时,求线段AP的长度4、如图,平面直角坐标系中,ABC的三个顶点的坐标分别为A(1,2),B(2,4),C(4,1)(1)在平面直角坐标系中画出与ABC关于点P(1,0)成中心对称的ABC,并分别写出点A,B,C的坐标;(2)如果点M(a,b)是ABC边上(不与A,B,C重合)任意一点,请写出在ABC上与点M对应的点M的坐标5、如图,点E为正方形

7、外一点,将绕A点逆时针方向旋转得到的延长线交于H点(1)试判定四边形的形状,并说明理由;(2)已知,求的长-参考答案-一、单选题1、B【解析】【分析】根据旋转的性质,找出图中三角形的关键处(旋转中心)按顺时针方向旋转90后的形状即可选择答案【详解】根据旋转的性质可知,绕O点顺时针旋转90得到的图形是 故选B【考点】本题考查了旋转的性质旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变2、A【解析】【分析】连接 BF,过点F作FGAB交AB延长线于点G,通过证明AEDGFE(AAS),确定F点在BF的射线上运动;作点C关于BF的对称点C,由三角形全等得到CBF=45,从而确定C点在

8、AB的延长线上;当D、F、C三点共线时,DF+CF=DC最小,在RtADC中,AD=3,AC=6,求出DC=3即可【详解】解:连接 BF,过点F作FGAB交AB延长线于点G,将ED绕点E顺时针旋转90到EF,EFDE,且EF=DE,AEDGFE(AAS),FG=AE,F点在BF的射线上运动,作点C关于BF的对称点C,EG=DA,FG=AE,AE=BG,BG=FG,FBG=45,CBF=45,BF是CBC的角平分线,即F点在CBC的角平分线上运动,C点在AB的延长线上,当D、F、C三点共线时,DF+CF=DC最小,在RtADC中,AD=3,AC=6,DC=3,DF+CF的最小值为3,此时的周长为

9、故选:A【考点】本题考查了旋转的性质,正方形的性质,轴对称求最短路径;能够将线段的和通过轴对称转化为共线线段是解题的关键3、D【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项不符合题意;C既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D不是轴对称图形,是中心对称图形,故本

10、选项符合题意故选:D【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合4、D【解析】【分析】根据旋转可知CABEAD,CAE=70,结合BAC=35,可知BAE=35,则可证得CABEAB,即可作答【详解】根据旋转的性质可知CABEAD,CAE=70,BAE=CAE-CAB=70-35=35,AC=AE,AB=AD,BC=DE,ABC=ADE,故A、B错误,CAB=EAB,AC=AE,AB=AB,CABEAB,EABEADBEA=DEA,AE平分BED,故D正确,AD+BE=AB+BEA

11、E=AC,故C错误,故选:D【考点】本题考查了旋转的性质和全等三角形的判定与性质,求出BAE=35是解答本题的关键5、D【解析】【分析】将菱形与构成的图形绕点逆时针旋转,每次旋转45,即点E,绕点O,逆时针旋转,每次旋转45,所以点E每8次一循环,又因为20228=252.6,所以E2022坐标与E6坐标相同,求出点E6的坐标即可求解【详解】解:如图,将菱形与构成的图形绕点逆时针旋转,每次旋转45,即点E,绕点O,逆时针旋转,每次旋转45,由图可得点E每8次一循环,20228=252.6,E2022坐标与E6坐标相同,A(0,1),OA=1,菱形,ABO=ADO=30,AD=AB=2OA=2,

12、OD=,ADE是等边三角形,ADE=60,DE=AD=2,ODE=90,DOE+DEO=90,过点E6作E6Fx轴于F,OFE6=ODE=90,E6OE=90,DOE+E6OF=90,DEO=E6OF,OE=OE6,ODEE6FO(AAS),OF=DE=2,E6F=OD=,E6(2,-),E2022(2,-),故选:D【考点】本题考查图形变换规律,菱形的性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,本题属旋转规律型,坐标变换规律型问题,找出图形变换规律,即得出点E变换规律是解题的关键6、D【解析】【分析】先依据,即可得出点P所在的象限,再根据两个点关于原点对称时,它们的坐标符号相反

13、,即可得出结论【详解】解:,点在第二象限,点关于原点对称点在第四象限.故选D【考点】本题主要考查了关于原点对称的两个点的坐标特征,明确关于原点对称的两个点的横、纵坐标均互为相反数是解答的关键7、B【解析】【分析】利用轴对称图形和中心对称图形的定义逐项判断即可【详解】A是轴对称图形不是中心对称图形故A不符合题意B是轴对称图形也是中心对称图形故B符合题意C是轴对称图形但不是中心对称图形故C不符合题意D不是中心对称图形也不是轴对称图形故D不符合题意故选:B【考点】本题考查轴对称图形和中心对称图形的定义,根据选项灵活判断其图形是否符合题意是解本题的关键8、B【解析】【分析】根据关于原点对称点的坐标变化

14、特征直接判断即可【详解】解:点与点关于原点对称,则点的坐标为,故选:B【考点】本题考查了关于原点对称点的坐标,解题关键是明确关于原点对称的两个点横纵坐标都互为相反数9、C【解析】【分析】由矩形的性质,可知ABC90,再由旋转,可知ABB为等腰三角形,根据内角和求解即可.【详解】解:连接BB四边形ABCD是矩形,ABC=90,CBB=15,ABB=90-15=75,AB=AB,ABB=ABB=75,BAB=180-275=30,=30,故选:C【考点】本题考查旋转的性质,矩形的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题10、A【解析】【分析】根据网格结构作出旋转后的图形,

15、然后根据平面直角坐标系写出点B的坐标即可【详解】ABO如图所示,点B(2,1)故选A【考点】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键二、填空题1、【解析】【分析】由于ADAB,DAB90,则把APD绕点A顺时针旋转90得到AFB,AD与AB重合,PA旋转到AF的位置,根据旋转的性质得到APAF,PAF90,PDFB,则APF为等腰直角三角形,得到APF45,即有BPFAPB+APF45+4590,然后在RtFBP中,根据勾股定理可计算出FB的长,即可得到PD的长【详解】解:ADAB,DAB90,把APD绕点A顺时针旋转90得到AFB,AD与AB重合,PA旋转到FA的位置

16、,如图,APAF,PAF90,PDFB,APF为等腰直角三角形,APF45, ,BPFAPB+APF45+4590,在RtFBP中,PB4,由勾股定理得,故答案为:【考点】本题考查了正方形的性质,旋转的性质,等腰直角三角形的判定和性质以及勾股定理正确的作出辅助线是解题关键2、y=-0.5x+5【解析】【分析】直接把点A(2,4)代入正比例函数y=kx,求出k的值即可;由A(2,4),ABx轴于点B,可得出OB,AB的长,再由ABO绕点A逆时针旋转90得到ADC,由旋转不变性的性质可知DC=OB,AD=AB,故可得出C点坐标,再把C点和A点坐标代入y=ax+b,解出解析式即可【详解】解:正比例函

17、数y=kx(k0)经过点A(2,4)4=2k,解得:k=2,y=2x;A(2,4),ABx轴于点B,OB=2,AB=4,ABO绕点A逆时针旋转90得到ADC,DC=OB=2,AD=AB=4C(6,2)设直线AC的解析式为y=ax+b,把(2,4)(6,2)代入解析式可得:,解得:,所以解析式为:y=-0.5x+5【考点】本题考查的是一次函数图象上点的坐标特点及图形旋转的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键3、D与【解析】【分析】平分5个圆,那么每份应是2.5,由过平行四边形中心的任意直线都能平分平行四边形的面积,应先作出平行四边形的中心,再把第5个圆平分即可

18、【详解】点D恰好是平行四边形的中心,则这里过D和O3即可故答案为:D和O3【考点】本题考查了作图-应用与设计作图以及平行四边形的判定和性质,正确的作出图形是解题的关键4、(2,2)【解析】【分析】过点A作AEx轴于E,过点B作BFx轴于F利用全等三角形的性质解决问题即可【详解】解:如图,过点A作AEx轴于E,过点B作BFx轴于FAECACBCFB90,ACE+BCF90,BCF+B90,ACEB,在AEC和CFB中,AECCFB(AAS),AECF,ECBF,A(3,3),C(1,0),AECF3,OC1,ECBF2,OFCFOC2,B(2,2),故答案为:(2,2)【考点】本题考查坐标与图形

19、变化旋转,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题5、【解析】【分析】过点A作AHDE,垂足为H,由旋转的性质可得 AE=AD=6,CAE=BAD=15,DAE=BAC=90,再根据等腰直角三角形的性质可得HAE=45,AH=3,进而得HAF=30,继而求出AF长即可求得答案.【详解】过点A作AHDE,垂足为H,BAC=90,AB=AC,将ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,AE=AD=6,CAE=BAD=15,DAE=BAC=90,DE=,HAE=DAE=45,AH=DE=3,HAF=HAE-CAE=30,AF=,CF=A

20、C-AF=,故答案为.【考点】本题考查了旋转的性质,等腰直角三角形的性质,勾股定理,解直角三角形等知识,正确添加辅助线构建直角三角形、灵活运用相关知识是解题的关键.三、解答题1、 (1)证明见解析;证明见解析(2)证明见解析(3)(或者对其恒等变形得到,),证明见解析【解析】【分析】(1)根据,得出,再根据即可判定;根据全等三角形的对应边相等,即可得出,进而得到;(2)先根据,得到,进而得出,再根据即可判定,进而得到,最后得出;(3)运用(2)中的方法即可得出,之间的等量关系是:或恒等变形的其他形式(1)解:,在和中,;,;(2)证明:,在和中,;,;(3)证明:当旋转到题图(3)的位置时,所

21、满足的等量关系是:或或理由如下:,在和中,(或者对其恒等变形得到或)【考点】本题属于三角形综合题,主要考查了全等三角形的判定与性质的综合应用,解题时注意:全等三角形的对应边相等,同角的余角相等,解决问题的关键是根据线段的和差关系进行推导,得出结论2、(1)见解析,点A1,B1,C1的坐标分别为(1,1),(1,4),(3,2);(2)【解析】【分析】(1)根据关于原点中心对称的特点画出图形,即可求解;(2)利用勾股定理,即可求解【详解】(1)如图,A1B1C1为所作, 根据题意得:点A1,B1,C1的坐标分别为(1, 1),(1,4),(3,2);(2)A1C1的长为【考点】本题主要考查了作图

22、中心对称和勾股定理,属于常考题型,熟练掌握相关知识是解题的关键3、(1)相等;90;(2)成立,证明见解析;(3)线段AP的长度为4或4【解析】【分析】(1)首先推知AP=PB,PC=AP,根据全等三角形的性质即可得到结论;(2)如图,连接AD,根据等边三角形的性质得到AB=AA,由旋转的性质得到AP=DP,APD=60,推出AAB是等边三角形,得到PA=PD=AD,根据全等三角形的性质即可得到结论;(3)如图,由(2)知,BAD=90根据已知条件得到D在BA的延长线上,由旋转的性质得到AP=DP,APD=60,推出AAB是等边三角形,得到PA=PD=AD,于是得到结论;如图,由(2)知,BA

23、D=90,根据旋转的性质得到AP=DP,APD=60,求得PA=PD=AD,PAD=BAA=60,根据全等三角形的性质得到PB=DA=4,根据勾股定理即可得到结论【详解】(1)在RtABC中,ACB90,AC2,ABC30,点A关于直线BC的对称点为A,则ABCABC30,ABABABA60ABA是等边三角形,AAB60,APD60,BAPABPPAC30,APPB,PCAP,APPD,PCPD,PCCD,ACAC,ACPACD,APCADC(SAS),DAAP,CADPAC30,PBDA,BAD60+3090,故答案为:相等;90;(2)成立,证明如下:如图,连接AD,AAB是等边三角形,A

24、BAA,由旋转的性质可得:APDP,APD60,APD是等边三角形,PAPDAD,BAPBAC+CAP,AADPAD+CAP,BACPAD,BAPAAD,在BAP与AAD中,BAPAAD(SAS),BPAD,AADABC30BAA60,DABBAA+AAD90;(3)如图,当点P在BC的延长线上时,由(2)知,BAD90BDA30,DBA60,D在BA的延长线上,由旋转的性质可得:APDP,APD60,APD是等边三角形,PAPDAD,BA4,BD8,APAD4; 如图,当点P在CB的延长线上时,由(2)知,BAD90,BDA30,BA4,DA4,由旋转的性质可得:APDP,APD60,APD

25、是等边三角形,PAPDAD,PADBAA60,PABDAA,ABAA,ABPAAD(SAS),PBDA4,AC2,BC2,CP6,AP4综上所述,线段AP的长度为4或4【考点】本题属于几何变换综合题,考查了全等三角形的判定和性质、等边三角形的判定和性质,正确的作出图形是解题的关键4、(1)ABC见解析,A(3,2),B(4,4),C(6,1);(2)M(2a,b)【解析】【分析】(1)分别作出A,B,C的对应点A、B、C,然后顺次连接可得ABC,再根据所作图形写出坐标即可(2)利用中点坐标公式计算即可【详解】解:(1)ABC如图所示,A(3,2),B(4,4),C(6,1);(2)设M(m,n

26、),则有,m2a,nb,M(2a,b)【考点】本题考查作图中心对称,解题的关键是熟练掌握中心对称的性质,正确找出对应点位置5、(1)正方形,理由见解析;(2)17【解析】【分析】(1)由旋转的性质可得AEBAFD90,AEAF,DAFEAB,由正方形的判定可证四边形BEFE是正方形;(2)连接,利用勾股定理可求,再利用勾股定理可求DH的长【详解】解:(1)四边形是正方形,理由如下:根据旋转: 四边形是正方形DAB=90FAEDAB=90四边形是矩形,又矩形是正方形(2)连接,在中,四边形是正方形在中,又,故答案是17【考点】本题是四边形综合题,考查了正方形的判定和性质,旋转的性质,勾股定理,全等三角形的判定和性质,等腰三角形的性质等知识,灵活运用这些性质进行推理是本题的关键

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1