收藏 分享(赏)

人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx

上传人:a**** 文档编号:869400 上传时间:2025-12-17 格式:DOCX 页数:36 大小:760.74KB
下载 相关 举报
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第1页
第1页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第2页
第2页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第3页
第3页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第4页
第4页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第5页
第5页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第6页
第6页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第7页
第7页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第8页
第8页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第9页
第9页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第10页
第10页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第11页
第11页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第12页
第12页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第13页
第13页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第14页
第14页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第15页
第15页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第16页
第16页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第17页
第17页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第18页
第18页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第19页
第19页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第20页
第20页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第21页
第21页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第22页
第22页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第23页
第23页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第24页
第24页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第25页
第25页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第26页
第26页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第27页
第27页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第28页
第28页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第29页
第29页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第30页
第30页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第31页
第31页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第32页
第32页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第33页
第33页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第34页
第34页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第35页
第35页 / 共36页
人教版九年级数学上册第二十三章旋转达标测试试卷(含答案详解).docx_第36页
第36页 / 共36页
亲,该文档总共36页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十三章旋转达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A的坐标为,点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60得到线段AC若点C的坐标为,则m

2、的值为()ABCD2、如图,在坐标系中放置一菱形 OABC,已知ABC=60,点 B 在 y 轴上,OA=1,先将菱形 OABC 沿 x 轴的正方向无滑动翻转,每次翻转 60,连续翻转2019次,点 B 的落点依次为 B1,B2,B3,则 B2 019 的坐标为()A(1010,0)B(13105, )C(1345, )D(1346,0)3、下列交通标识中,不是轴对称图形,是中心对称图形的是()ABCD4、在下列面点烘焙模具中,其图案是中心对称图形的是()ABCD5、如图,将绕点A按顺时针旋转一定角度得到,点B的对应点D恰好落在BC边上,若,则CD的长为().ABCD16、如图,边长为5的等边

3、三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是()AB1C2D7、如图,在方格纸中,将绕点按顺时针方向旋转90后得到,则下列四个图形中正确的是( )ABCD8、如图,AOB中,OA4,OB6,AB2,将AOB绕原点O旋转90,则旋转后点A的对应点A的坐标是()A(4,2)或(4,2)B(2,4)或(2,4)C(2,2)或(2,2)D(2,2)或(2,2)9、如图,矩形ABCD绕点A逆时针旋转(090)得到矩形ABCD,此时点B恰好在DC边上,若BBC=15,则的大小为()A15B25C30D4510、如图,与关于成中心对称,不

4、一定成立的结论是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将n个边长都为1cm的正方形按如图所示摆放,点A1, A2,An分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为 _2、如图,正方形ABCD的边长是5,E是边BC上一点且BE2,F为边AB上的一个动点,连接EF,以EF为边向右作等边三角形EFG,连接CG,则CG长的最小值为_3、如图,在坐标系中放置一菱形,已知,点B在y轴上,先将菱形沿x轴的正方向无滑动翻转,每次翻转60,连续翻转12次,点B的落点依次为,则的横坐标为_4、如图,将ABC绕点A逆时针旋转得到ADE,点C和点E是

5、对应点,若CAE=90,AB=1,则BD=_5、在平面直角坐标系内,点A(,2)关于原点中心对称的点的坐标是_三、解答题(5小题,每小题10分,共计50分)1、如图,点A(a,0),B(0,b),且a、b满足(a2)2+|4b8|0(1)如图1,求a,b的值;(2)如图2,点C在线段AB上(不与A、B重合)移动,ABBD,且COD45,猜想线段AC、BD、CD之间的数量关系并证明你的结论;(3)如图3,若P为x轴正半轴上异于原点O和点A的一个动点,连接PB,将线段PB绕点P顺时针旋转90至PE,直线AE交y轴于点Q,当P点在x轴上移动时,线段BE和线段BQ中哪一条线段长为定值,并求出该定值2、

6、图,在每个小正方形的边长为1个单位的网格中,的顶点均在格点(网格线的交点)上(1)将向右平移5个单位得到,画出;(2)将(1)中的绕点C1逆时针旋转得到,画出3、如图,在平面直角坐标系中,抛物线M的表达式为yx2+2x,与x轴交于O、A两点,顶点为点B(1)求证:OAB为等腰直角三角形:(2)已知点P在y轴上,且OP1,点C在第一象限,ABC为等腰直角三角形,将抛物线M进行平移,使其对称轴经过点C,请问平移后的抛物线能否经过点P?如果能,求出平移方式;如果不能,说明理由4、定义:将图形M绕点P顺时针旋转90得到图形N,则图形N称为图形M关于点P的“垂直图形”例如:在下图中,点D为点C关于点P的

7、“垂直图形” (1)点A关于原点O的“垂直图形”为点B若点A的坐标为(0,2),直接写出点B的坐标;若点B的坐标为(2,1),直接写出点A的坐标;(2)E(-3,3),F(-2,3),G(a,0)线段EF关于点G的“垂直图形”记为EF,点E的对应点为E,点F的对应点为F求点E的坐标;当点G运动时,求的最小值5、问题原型:如图,在等腰直角三角形ABC中,ACB=90,BC=a将边AB绕点B顺时针旋转90得到线段BD,连结CD过点D作BCD的BC边上的高DE,易证ABCBDE,从而得到BCD的面积为 初步探究:如图,在RtABC中,ACB=90,BC=a将边AB绕点B顺时针旋转90得到线段BD,连

8、结CD用含a的代数式表示BCD的面积,并说明理由简单应用:如图,在等腰三角形ABC中,AB=AC,BC=a将边AB绕点B顺时针旋转90得到线段BD,连结CD直接写出BCD的面积(用含a的代数式表示)-参考答案-一、单选题1、C【解析】【分析】过C作CDx轴于D,CEy轴于E,根据将线段AB绕点A按逆时针方向旋转60得到线段AC,可得ABC是等边三角形,又A(0,2),C(m,3),即得,可得,从而,即可解得【详解】解:过C作CDx轴于D,CEy轴于E,如图所示:CDx轴,CEy轴,CDO=CEO=DOE90,四边形EODC是矩形,将线段AB绕点A按逆时针方向旋转60得到线段AC,ABAC,BA

9、C60,ABC是等边三角形,ABACBC,A(0,2),C(m,3),CEmOD,CD3,OA2,AEOEOACDOA1,在RtBCD中,在RtAOB中,OBBDODm,化简变形得:3m422m2250,解得:或(舍去),故C正确故选:C【考点】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度2、D【解析】【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4由于2019=3366+3,因此点向右平移(即)即可到达点,根据点的坐标就可求出点的坐标【详解】连接AC,如图所示四边形OAB

10、C是菱形,OA=AB=BC=OCABC=60,ABC是等边三角形AC=ABAC=OAOA=1,AC=1由图可知:每翻转6次,图形向右平移42019=3366+3,点B3向右平移1344(即3364)到点B2019B3的坐标为(2,0),B2019的坐标为(1346,0),故选:D【考点】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力发现“每翻转6次,图形向右平移4”是解决本题的关键3、D【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图

11、形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项不符合题意;C既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D不是轴对称图形,是中心对称图形,故本选项符合题意故选:D【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合4、D【解析】【分析】根据中心对称图形的性质得出图形旋转180,与原图形能够完全重合的图形是中心对称图形,分别判断得出即

12、可【详解】解:A.不是中心对称图形,不符合题意;B.不是中心对称图形,不符合题意;C.不是中心对称图形,不符合题意;D.是中心对称图形,符合题意;故选:D【考点】此题主要考查了中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键5、D【解析】【分析】根据直角三角形两锐角互余可得C=30,根据含30角的直角三角形的性质可求出BC的长,然后根据旋转的性质可得AB=AD,然后判断出ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC-BD计算即可得解【详解】解:B=60,C=90-60=30,AB=1,BC=2AB=2,由旋转的性质得,AB=AD,ABD是

13、等边三角形,BD=AB=1,CD=BC-BD=2-1=1故选:D【考点】本题考查了旋转的性质,含30角的直角三角形的性质,等边三角形的判定与性质,熟记性质并判断出ABD是等边三角形是解题的关键6、A【解析】【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,C

14、H是等边ABC的对称轴,HB=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60=30,CG=AB=5=2.5,MG=CG=,HN=,故选A【考点】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点7、B【解析】【分析】根据绕点按顺时针方向旋转90逐项分析即可【详解】A、是由关于过B点与OB垂直的直线对称得到,故A选项不符合题意;B、是由绕点按顺时针方向旋转90后得到,故B选项符合题意;C、与

15、对应点发生了变化,故C选项不符合题意;D、是由绕点按逆时针方向旋转90后得到,故D选项不符合题意故选:B【考点】本题考查旋转变换解题的关键是弄清旋转的方向和旋转的度数8、C【解析】【分析】先求出点A的坐标,再根据旋转变换中,坐标的变换特征求解;或根据题意画出图形旋转后的位置,根据旋转的性质确定对应点A的坐标【详解】过点A作于点C在RtAOC中, 在RtABC中, OA4,OB6,AB2,点A的坐标是根据题意画出图形旋转后的位置,如图,将AOB绕原点O顺时针旋转90时,点A的对应点A的坐标为;将AOB绕原点O逆时针旋转90时,点A的对应点A的坐标为故选:C【考点】本题考查了解直角三角形、旋转中点

16、的坐标变换特征及旋转的性质(a,b)绕原点顺时针旋转90得到的坐标为(b,-a),绕原点逆时针旋转90得到的坐标为(b,a)9、C【解析】【分析】由矩形的性质,可知ABC90,再由旋转,可知ABB为等腰三角形,根据内角和求解即可.【详解】解:连接BB四边形ABCD是矩形,ABC=90,CBB=15,ABB=90-15=75,AB=AB,ABB=ABB=75,BAB=180-275=30,=30,故选:C【考点】本题考查旋转的性质,矩形的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题10、D【解析】【分析】根据中心对称的性质即可判断【详解】解:对应点的连线被对称中心平分,A,

17、B正确;成中心对称图形的两个图形是全等形,那么对应线段相等,C正确;和不是对应角,D错误故选:D【考点】本题考查成中心对称两个图形的性质:对应点的连线被对称中心平分;成中心对称图形的两个图形是全等形二、填空题1、【解析】【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和【详解】由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为4,n个这样的正方形重叠部分(阴影部分)的面积和为(n-1)=cm2【考点】本题考查了正方形的性质,熟悉正方形的性质是解题关键2、【解析】【分析

18、】由题意分析可知,点F为主动点,运动轨迹是线段AB,G为从动点,所以以点E为旋转中心构造全等关系,得到点G的运动轨迹,也是一条线段,之后通过垂线段最短构造直角三角形获得CG最小值【详解】解:由题意可知,点F是主动点,点G是从动点,点F在线段AB上运动,点G的轨迹也是一条线段,将EFB绕点E旋转60,使EF与EG重合,得到EFBEGH,从而可知EBH为等边三角形,四边形ABCD是正方形,FBE=90,GHE=FBE=90,点G在垂直于HE的直线HN上,延长HG交DC于点N,过点C作CMHN于M,则CM即为CG的最小值,过点E作EPCM于P,可知四边形HEPM为矩形,PEC=30,EPC=90,则

19、CM=MP+CP=HE+EC=2+=,故答案为:【考点】本题考查了线段最值问题,分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是本题的关键,之后运用垂线段最短,构造图形计算,是最值问题中比较典型的类型3、【解析】【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4,由于,因此点B向右平移8即可到达点,根据点B的坐标就可求出点的坐标【详解】连接AC,如图所示, 四边形OABC是菱形,是等边三角形,画出第5次、第6次、第7次翻转后的图形,如图所示,由图可知:每翻转6次,图形向右平移4,点B向右平移24=8个单位到

20、点,B点的坐标为,的坐标为,故答案为:【考点】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力发现“每翻转6次,图形向右平移4”是解决本题的关键4、【解析】【详解】将ABC绕点A逆时针旋转的到ADE,点C和点E是对应点,AB=AD=1,BAD=CAE=90,BD=.故答案为:.5、(,2)【解析】【分析】关于原点中心对称的点的坐标特征是:横坐标、纵坐标均变为原数的相反数【详解】解:点A(,2)关于原点中心对称的点的坐标是(,2) 故答案为:(,2)【考点】本题考查关于原点中心对称的点的坐标特征,是重要考点,难度较易,掌握相关知识是解题关键三、解答题1、 (1

21、)2(2)CD=BD+AC理由见解析(3)BQ是定值,【解析】【分析】(1)根据非负数的性质得到a-2=0,4b-8=0,求得a=2,b=2,得到OA=2,OB=2,于是得到结果; (2)证明:将AOC绕点O逆时针旋转90得到OBF根据已知条件得到DBF=180,由DOC=45,AOB=90,同时代的BOD+AOC=45,求出FOD=BOF+BOD=BOD+AOC=45,推出ODFODC,根据全等三角形的性质得到DC=DF=DB+BF=DB+DC; (3)BQ是定值,作EFOA于F,在FE上截取PF=FD,由BAO=PDF=45,得到PAB=PDE=135,根据余角的性质得到BPA=PED,推

22、出PBAEPD,根据全等三角形的性质得到AP=ED,于是得到FD+ED=PF+AP即:FE=FA,根据等腰直角三角形的性质得到结论(1)解:(a2)2+|4b8|0,a-2=0,4b-8=0, a=2,b=2, A(2,0)、B(0,2), OA=2,OB=2, AOB的面积=;(2)证明:如图2,将AOC绕点O逆时针旋转90得到OBF,而 OAC=OBF=OBA=45,DBA=90, DBF=180, DOC=45,AOB=90, BOD+AOC=45, FOD=BOF+BOD=BOD+AOC=45, 在ODF与ODC中, :ODFODC,DC=DF,DF=BD+BF,CD=BD+AC(3)

23、BQ是定值,BE明显不是定值,理由如下:作EFOA于F,在FE上截取FD=PF, BAO=PDF=45, PAB=PDE=135, BPA+EPF=90,EPF+PED=90, BPA=PED,在PBA与EPD中, PBAEPD(AAS), AP=ED, FD+ED=PF+AP, 即:FE=FA, FEA=FAE=45, QAO=EAF=OQA=45, OA=OQ=2, BQ=4为定值【考点】本题考查了全等三角形的判定和性质,坐标与图形的性质,等腰直角三角形的判定与性质,旋转的性质,三角形面积的计算,非负数的性质,正确的作出辅助线是解题的关键2、(1)作图见解析;(2)作图见解析【解析】【分析

24、】(1)利用点平移的规律找出、,然后描点即可;(2)利用网格特点和旋转的性质画出点,即可【详解】解:(1)如下图所示,为所求;(2)如下图所示,为所求;【考点】本题考查了平移作图和旋转作图,熟悉相关性质是解题的关键3、 (1)见详解(2)将抛物线M向右平移个单位,再向上平移个点,得过点C1和点P的抛物线;抛物线M向右平移个单位,再向上平移得出过点C2和点P的抛物线;抛物线M向右平移个单位。再向上平移个单位,得点过点C3与P的抛物线【解析】【分析】(1)将抛物线M配方为顶点式得出抛物线的对称轴为x=2,抛物线的顶点B(2,2),然后求出点A(4,0),根据对称轴求出点E(2,O),BEOA,证明

25、OEB为等腰直角三角形,再证AEB为等腰直角三角形即可;(2)根据ABC为等腰直角三角形,分以下三种情况,以AB为直角边,点B为直角顶点,将AB绕点B逆时针旋转90,得出点C1(4,4)将抛物线M向右平移2个单位,再向上平移2个点,得出以C1为顶点的抛物线为,以AB为直角边,以点A直角顶点,将AB绕点A顺时针旋转90,得AC2,求出点C2(6,2),抛物线M向右平移4个单位得出过顶点C2的抛物线;以AB为斜边,点C3为直角顶点,点C3在AC1的中点,C3(4,2)即可(1)解:抛物线M的表达式为,抛物线的对称轴为x=2,抛物线的顶点B(2,2),抛物线与x轴的交点,解得:,点A(4,0),抛物

26、线对称轴为x=2,点E(2,O),BEOA,OE=BE=2,OEB=90,OEB为等腰直角三角形,BOE=OBE=45,AE=OA-OE=4-2=2,BE=AE,AEB=90,AEB为等腰直角三角形,EBA=EAB=45,BOE=OBE=EBA=EAB=45,OB=AB,OBA=OBE+ABE=45+45=90,OAB为等腰直角三角形(2)解:ABC为等腰直角三角形,分以下三种情况,以AB为直角边,点B为直角顶点,将AB绕点B逆时针旋转90,BAC1=45,CAO=OAB+C1AB=45+45=90,CAx轴,OBA+ABC1=90+90=180,点O、B、C1三点共线,C1OA=45,OAC

27、1为等腰直角三角形,C1A=OA=4,点C1(4,4)OP=1,点P(0,1)设过点P与C1形状与M斜体的抛物线解析式为,代入坐标得解得,将抛物线M向右平移个单位,再向上平移个点,得过点C1和点P的抛物线以AB为直角边,以点A直角顶点,将AB绕点A顺时针旋转90,得AC2,C2BA=45=BAO,BC2OA,OBA=C2AB,AC2OB,四边形OBC2A,BC2=OA=4,点C2横坐标为OE+BC2=2+4=6,点C2(6,2),点P(0,1)设过点P与C2形状与M斜体的抛物线解析式为,代入坐标得解得,抛物线M向右平移个单位,再向上平移得出过点C2和点P的抛物线;以AB为斜边,点C3为直角顶点

28、,点C3在AC1的中点,C3(4,2)点P(0,1)设过点P与C3形状与M斜体的抛物线解析式为,代入坐标得解得,抛物线M向右平移个单位。再向上平移个单位,得点过点C3与P的抛物线【考点】本题考查图形与坐标,待定系数法求抛物线解析式,二次函数的性质,等腰直角三角形,图形旋转,抛物线平移,掌握图形与坐标,待定系数法求抛物线解析式,二次函数的性质,等腰直角三角形,图形旋转,抛物线平移是解题关键4、 (1)B(2,0);A(-1,2);(2)E(3+a,3+a);FF的最小值为3【解析】【分析】(1)根据“垂直图形”的定义解决问题即可;(2)构造全等三角形,利用全等三角形的性质求解即可;FGF是等腰直

29、角三角形,当FGx轴时,FG取得最小值,即FF有最小值,据此求解即可解决问题(1)解:如图中,观察图象可知B(2,0);如图,AOB=ACO=ODB=90,A+AOC=90,AOC+BOD=90,A=BOD,AO=OB,AOCOBD(AAS),OC=BD=1,AC=OD=2,A(-1,2);(2)解:如图,过点E作EPx轴于P,过点E作EHx轴于HEPG=EGE=GHE=90,E+PGE=90,PGE+EGH=90,E=EGH,EG=GE,EPGGHE(AAS),EP=GH=3,PG=EH=a+3,OH=3+a,E(3+a,3+a);FGF=90,FG=GF,FGF是等腰直角三角形,FF=FG

30、,当FGx轴时,FG取得最小值,即FF有最小值,FF的最小值为3【考点】本题考查几何变换综合题,考查了旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是理解题意,学会添加常用辅助线,构造全等三角形解决问题5、见解析【解析】【详解】试题分析:(1)初步探究:如图,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出ABCBDE,就有DE=BC=a,进而由三角形的面积公式得出结论,(2)简单运用:如图,过点A作AFBC与F,过点D作DEBC的延长线于点E,由等腰三角形的性质可以得出BF=BC,由条件可以得出AFBBED就可以得出BF=DE,由三

31、角形的面积公式就可以得出结论.试题解析:(1)BCD的面积为,理由:如图,过点D作BC的垂线,与BC的延长线交于点E,BED=ACB=90,线段AB绕点B顺时针旋转90得到线段BE,AB=BD,ABD=90,ABC+DBE=90,A+ABC=90,A=DBE,在ABC和BDE中,ABCBDE(AAS),BC=DE=a,SBCD=SBCD=,(2)简单应用:如图,过点A作AFBC与F,过点D作DEBC的延长线于点E,AFB=E=90,BF=,FAB+ABF=90,ABD=90,ABF+DBE=90,FAB=EBD,线段BD是由线段AB旋转得到的,AB=BD,在AFB和BED中,AFBBED(AAS),BF=DE=,SBCD=,SBCD=,BCD的面积为,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1