1、高考资源网() 您身边的高考专家课时作业37函数模型的应用时间:45分钟基础巩固类1某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数图象正确的是(A)解析:前3年年产量的增长速度越来越快,说明是高速增长,只有A,C图象符合要求,而后3年年产量保持不变,故选A.2在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是(B)x1.992345.156.126y1.5174.041 87.51218.01A.y2x2 By(x21)Cyl
2、og2x Dylogx解析:由题中表可知函数在(0,)上是增函数,且y的变化随x的增大而增大的越来越快,分析选项可知B符合,故选B.3某工厂采用高科技改革,在两年内产值的月增长率都是a,则这两年内第二年某月的产值比第一年相应月产值的增长率为(B)Aa121 B(1a)121Ca Da1解析:不妨设第一年1月份的产量为b,则2月份的产值为b(1a),3月份的产值为b(1a)2,依此类推,第二年1月份产值是b(1a)12.又由增长率的概念知,这两年内的第二年某月的产值比第一年相应月产值的增长率为(1a)121.4.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元一个月的本地
3、网内通话时间t(分钟)与电话费S(元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差(A)A10元 B20元C30元 D.元解析:依题意可设SA(t)20kt,SB(t)mt.又SA(100)SB(100),100k20100m,得km0.2,于是SA(150)SB(150)20150k150m20150(0.2)10,即两种方式电话费相差10元,故选A.5某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y14.1x0.1x2,在B地的销售利润(单位:万元)为y22x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的
4、最大利润是(C)A10.5万元 B11万元C43万元 D43.025万元解析:设公司在A地销售该品牌的汽车x辆,则在B地销售该品牌的汽车(16x)辆,所以可得利润y4.1x0.1x22(16x)0.1x22.1x320.1(x10.5)20.1(10.5)232.因为x0,16且xN,所以当x10或x11时,总利润取得最大值,最大值为43万元6将进货单价为80元的商品按90元一个出售时,能卖出400个已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定为95元解析:设每个售价定为x元,则利润y(x80)400(x90)2020(x95)2225当x95时,y最大7国家
5、规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4 000元的按超出800元部分的14%纳税;超过4 000元的按全稿酬的11.2%纳税,王老师写一本书共纳税420元,则这本书的稿费(纳税前)为3_800元解析:设纳税前稿费为x元,纳税为y元,由题意可知y此人纳税为420元,(x800)14%420,解得x3 800.8某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h的速度直达灾区已知某市到灾区公路线长400 km,为了安全起见,两辆汽车的间距不得小于2 km,那么这批物资全部到达灾区的最少时间是12h(车身长度不计)解析:设全部物资到达灾区所需时间为t h,由题
6、意可知,t相当于最后一辆车行驶了 km所用的时间,因此t12,当且仅当,即v时取等号故这些汽车以 km/h的速度匀速行驶时,所需时间最少,最少时间为12 h.9在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,保证企业乙的全体职工每月最低生活费的开支3 600元后,再逐步偿还转让费(不计息)在甲提供的资料中:这种消费品的进价为每件14元;该店月销量Q(百件)与销售价格P(元)的关系如图所示;每月需各种开支2 000元(1)当商品的价格为每件多少元时,月利润扣除职工最低生
7、活费后的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?解:(1)设该店月利润余额为L元,则由题设得LQ(P14)1003 6002 000,由题中销量图易得Q代入式得L当14P20时,Lmax450元,此时P19.5元;当200,解得x2.3,x为整数,3x6,xZ.当x6时,y503(x6)x1153x268x115.令3x268x1150,有3x268x1150,结合x为整数得6x20,xZ.y(2)对于y50x115(3x6,xZ),显然当x6时,ymax185;对于y3x268x11532(6185,当每辆自行车的日租金定为11元时,才能使一日的净收入最多14提
8、高过江大桥的车辆通行能力可改善整个城市的交通状况在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时研究表明:当20x200时,车流速度v是车流密度x的一次函数(1)当0x200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)xv(x)可以达到最大,并求出最大值(精确到1辆/小时)解:(1)由题意:当0x20时,v(x)60;当20x200时,设v(x)axb,再由已知得解得故函数v(x)的表达式为v(x)(2)依题意及(1)可得f(x)当0x20时,f(x)为增函数,故当x20时,f(x)取得最大值,其最大值为60201 200;当20x200时,f(x)x(200x)2,当且仅当x200x,即x100时,等号成立所以,当x100时,f(x)取得最大值.综上,当x100时,f(x)在区间0,200上取得最大值3 333,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/小时高考资源网版权所有,侵权必究!