ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:349KB ,
资源ID:861636      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-861636-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022学年高中人教版数学必修4学案:第2章 2-4-2 平面向量数量积的坐标表示、模、夹角 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022学年高中人教版数学必修4学案:第2章 2-4-2 平面向量数量积的坐标表示、模、夹角 WORD版含答案.doc

1、2.4.2平面向量数量积的坐标表示、模、夹角学 习 目 标核 心 素 养1.掌握平面向量数量积的坐标表示及其运算(重点)2.会运用向量的坐标运算求解向量垂直、夹角等相关问题(难点)3.分清向量平行与垂直的坐标表示(易混点)1.通过平面向量数量积的坐标表示,培养学生的数学运算素养.2.借助向量的坐标运算求向量的夹角、长度以及论证垂直问题,提升学生逻辑推理和数学运算素养.1平面向量数量积的坐标表示设向量a(x1,y1),b(x2,y2),a与b的夹角为.数量积abx1x2y1y2向量垂直abx1x2y1y202.向量模的公式设a(x1,y1),则|a|.3两点间的距离公式若A(x1,y1),B(x

2、2,y2),则|.4向量的夹角公式设两非零向量a(x1,y1),b(x2,y2),a与b 夹角为,则cos .思考:已知向量a(x,y),你知道与a共线的单位向量的坐标是什么吗?与a垂直的单位向量的坐标又是什么?提示设与a共线的单位向量为a0,则a0a,其中正号、负号分别表示与a同向和反向易知b(y,x)和a(x,y)垂直,所以与a垂直的单位向量b0的坐标为,其中正、负号表示不同的方向1若向量a(x,2),b(1,3),ab3,则x等于()A3B3C. DAabx63,x3,故选A.2已知a(2,1),b(2,3),则ab_,|ab|_.12ab22(1)31,ab(4,2),|ab|2.3已

3、知向量a(1,3),b(2,m),若ab,则m_.因为ab,所以ab1(2)3m0,解得m.4已知a(3,4),b(5,12),则a与b夹角的余弦值为_因为ab3541263,|a|5,|b|13,所以a与b夹角的余弦值为.平面向量数量积的坐标运算【例1】(1)如图,在矩形ABCD中,AB,BC2,点E为BC的中点,点F在边CD上,若,则的值是_(2)已知a与b同向,b(1,2),ab10.求a的坐标;若c(2,1),求a(bc)及(ab)c.思路点拨:(1) (2) 先由ab设点a坐标,再由ab10求.依据运算顺序和数量积的坐标公式求值(1)以A为坐标原点,AB为x轴、AD为y轴建立平面直角

4、坐标系,则B(,0),D(0,2),C(,2),E(,1)可设F(x,2),因为(,0)(x,2)x,所以x1,所以(,1)(1,2).(2)解设ab(,2)(0),则有ab410,2,a(2,4)bc12210,ab10,a(bc)0a0,(ab)c10(2,1)(20,10)数量积运算的途径及注意点(1)进行向量的数量积运算,前提是牢记有关的运算法则和运算性质,解题时通常有两条途径:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.(2)对于以图形为背景的向量数量积运算的题目,只需把握图形的特征,并写出相应点的坐标即可求解.1向量a(1,1)

5、,b(1,2),则(2ab)a()A1B0C1 D2Ca(1,1),b(1,2),(2ab)a(1,0)(1,1)1.2在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,(1,2),(2,1),则()A5 B4C3 D2A由(1,2)(2,1)(3,1),得(2,1)(3,1)5.向量模的坐标表示【例2】(1)设平面向量a(1,2),b(2,y),若ab,则|2ab|等于()A4 B5C3 D4(2)若向量a的始点为A(2,4),终点为B(2,1),求:向量a的模;与a平行的单位向量的坐标;与a垂直的单位向量的坐标思路点拨:综合应用向量共线、垂直的坐标表示和向量模的坐标表示求解(1)D

6、由ab得y40,y4,b(2,4),2ab(4,8),|2ab|4.故选D.(2)解a(2,1)(2,4)(4,3),|a|5.与a平行的单位向量是(4,3),即坐标为或.设与a垂直的单位向量为e(m,n),则ae4m3n0,.又|e|1,m2n21.解得或e或e.求向量的模的两种基本策略(1)字母表示下的运算:利用|a|2a2,将向量模的运算转化为向量与向量的数量积的问题.(2)坐标表示下的运算:若a(x,y),则aaa2|a|2x2y2,于是有|a|3已知平面向量a(3,5),b(2,1)(1)求a2b及其模的大小;(2)若ca(ab)b,求|c|.解(1)a2b(3,5)2(2,1)(7

7、,3),|a2b|.(2)ab(3,5)(2,1)3(2)511,ca(ab)b(3,5)(2,1)(1,6),|c|.向量的夹角与垂直问题探究问题1设a,b都是非零向量,a(x1,y1),b(x2,y2),是a与b的夹角,那么cos 如何用坐标表示?提示:cos .2已知向量a(1,2),向量b(x,2),且a(ab),则实数x等于?提示:由已知得ab(1x,4)a(ab),a(ab)0.a(1,2),1x80,x9.【例3】(1)已知向量a(2,1),b(1,k),且a与b的夹角为锐角,则实数k的取值范围是()A(2,) B.C(,2) D(2,2)(2)“勾3股4弦5”是勾股定理的一个特

8、例根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,比毕达哥拉斯发现勾股定理早了500多年如图,在矩形ABCD中,ABC满足“勾3股4弦5”,且AB3,E为AD上一点,BEAC.若,则的值为()A.B.C.D.思路点拨:(1)可利用a,b的夹角为锐角求解(2)设出点E的坐标,利用列方程组求和.(1)B(2)C(1)当a与b共线时,2k10,k,此时a,b方向相同,夹角为0,所以要使a与b的夹角为锐角,则有ab0且a,b不同向由ab2k0得k2,且k,即实数k的取值范围是,选B.(2)由题意建立如图所示的直角坐标系,因为AB3,BC4,则A,B,C.设E,则,因为BEAC,所

9、以4a90,解得a,由,得,所以 解得 ,所以.1将本例(1)中的条件“a(2,1)”改为“a(2,1)”,“锐角”改为“钝角”,求实数k的取值范围解当a与b共线时,2k10,k,此时a与b方向相反,夹角为180,所以要使a与b的夹角为钝角,则有ab0,且a与b不反向由ab2k0得k2.由a与b不反向得k,所以k的取值范围是.2将本例(1)中的条件“锐角”改为“”,求k的值解cos,即,整理得3k28k30,解得k或3.1利用数量积的坐标表示求两向量夹角的步骤(1)求向量的数量积利用向量数量积的坐标表示求出这两个向量的数量积(2)求模利用|a|计算两向量的模(3)求夹角余弦值由公式cos 求夹

10、角余弦值(4)求角由向量夹角的范围及cos 求的值2涉及非零向量a,b垂直问题时,一般借助ababx1x2y1y20来解决1平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同的途径准确地把握这两种途径,根据不同的条件选择不同的途径,可以优化解题过程同时,平面向量数量积的两种形式沟通了“数”与“形”转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具2应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力3注意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆若a(x1,y1),b(x2,y2),则abx1

11、y2x2y10,abx1x2y1y20.4事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的概念”和忽视“两向量夹角”的范围,稍不注意就会带来失误与错误1若a(x1,y1),b(x2,y2),下列命题错误的是()Aabx1x2y1y20Bab0a与b的夹角为钝角C若ab0,则a与b不垂直D|表示A,B两点之间的距离B当a与b共线且反向时,ab0,故B不正确2已知a(3,1),b(1,2),则a与b的夹角为()A.B.C. D.Bab31(1)(2)5,|a|,|b|,设a与b的夹角为,则cos .又0,.3设a(2,4),b(1,1),若b(amb),则实数m_.3amb(2m,4m),b(amb),(2m)1(4m)10,得m3.4已知平面向量a(1,x),b(2x3,x),xR.(1)若ab,求x的值;(2)若ab,求|ab|.解(1)若ab,则ab(1,x)(2x3,x)1(2x3)x(x)0,即x22x30,解得x1或x3.(2)若ab,则1(x)x(2x3)0,即x(2x4)0,解得x0或x2.当x0时,a(1,0),b(3,0),ab(2,0),|ab|2.当x2时,a(1,2),b(1,2),ab(2,4),|ab|2.综上,|ab|2或2.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3