ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:965KB ,
资源ID:859930      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-859930-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(甘肃省天水市第一中学2020-2021学年高二上学期第二学段考试(期末考试)数学(文)试题 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

甘肃省天水市第一中学2020-2021学年高二上学期第二学段考试(期末考试)数学(文)试题 WORD版含解析.doc

1、天水一中高二级2020-2021学年度第一学期第二阶段考试数学(文)试题一单选题1. 已知等差数列中,则的值是( )A. 15B. 30C. 3D. 64【答案】A【解析】【分析】设等差数列的公差为,根据等差数列的通项公式列方程组,求出和的值,即可求解.【详解】设等差数列的公差为,则,即 解得:,所以,所以的值是,故选:A2. 设,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】根据充分条件和必要条件的概念,结合一元二次不等式的解法,即可得出结果.【详解】由得或,所以由“”可得到“”,但由“”得不到是“”;所以“”是

2、“”的必要不充分条件.故选:B.【点睛】结论点睛:判定命题的充分条件和必要条件时,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件, 则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件, 对的集合与对应集合互不包含3. 已知椭圆的左右焦点为,是椭圆上的点,且,则( )A. 1B. 2C. 3D. 4【答案】D【解析】【分析】利用椭圆的定义,由即可求解.【详解】由椭圆,则,所以,所以.故选:D4. 已知正实数,满足,则最小值为( )A. 32B. 34C. 36D. 38【答案】

3、A【解析】【分析】由题中条件,得到,展开后,利用基本不等式,即可求出结果.【详解】由,且,得,当且仅当,即时,取等号,此时,则的最小值为32故选:A.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地.5. 双曲线的渐近线方程为( )A. B. C. D. 【答案】B【解析】【

4、分析】由双曲线方程的渐近线为,结合标准方程即可得渐近线方程.【详解】由双曲线方程知:渐近线,故选:B6. 已知双曲线C:的离心率e,且其右焦点为F2(5,0),则双曲线C的方程为( )A. B. C. D. 【答案】C【解析】【分析】根据焦点坐标,可求得c的值,根据离心率,可求得a的值,根据b2c2a2,可求得b的值,即可求得答案.【详解】根据右焦点为F2(5,0),可得c5,又离心率为,所以a4,所以b2c2a29,所以双曲线方程为,故选:C.7. 已知数列中,则( )A. 2045B. 1021C. 1027D. 2051【答案】A【解析】【分析】由数列递推关系式得到数列 为首项为4,公比

5、为2的等比数列求出其通项公式可得的值【详解】,变形为即故数列 为等比数列,首项为4,公比为2故选:A8. 已知抛物线的焦点为F,是C上一点,则=( )A. 1B. 2C. 4D. 8【答案】A【解析】【分析】利用抛物线的定义、焦半径公式列方程即可得出【详解】由抛物线可得,准线方程,是上一点,解得故选:9. 函数在区间的图象大致是( )A. B. C. D. 【答案】D【解析】【分析】根据函数值的符号可排除,由函数的极值点可排除,从而得到正确结果.【详解】因为当时,所以,图象落在第三象限,所以排除,因为,分析其单调性,可知其极大值点应为,在的右侧,故排除C,故选:D.【点睛】方法点睛:该题考查函

6、数图象的识别,通常采用排除法来进行判断;排除的依据通常为:(1)函数的定义域、奇偶性;(2)特殊位置的符号、单调性;(3)利用导数研究其单调性和极值点.10. 过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则( )A. B. C. D. 【答案】C【解析】【分析】需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,结合比值与正切二倍角公式化简即可【详解】如图,设准线与轴的交点为,过点作.由抛物线定义知,所以,所以.故选:C【点睛】本题考查抛物线的几何性质,三角函数的性质,数形

7、结合思想,转化与化归思想,属于中档题二填空题11. 已知函数,则曲线在点处的切线方程为_.【答案】【解析】【分析】根据导数的几何意义求出切线的斜率,利用点斜式求切线方程.【详解】因为,所以,又故切线方程为,整理为,故答案为:【点睛】本题主要考查了导数的几何意义,切线方程,属于容易题.12. 已知实数,满足,则的最大值为_.【答案】4【解析】【分析】根据线性规划画图,平移,求点,代值即可求出结果.【详解】解:作出不等式组所表示的平面区域如图中阴影部分所示(含边界);观察可知,当直线过点时,有最大值;联立,解得,故的最大值为故答案为:4【点睛】用图解法解决简单的线性规划问题的基本步骤:首先,要根据

8、线性约束条件画出可行域 (即画出不等式组所表示的公共区域)设z0,画出直线l0观察、分析、平移直线l0,从而找到最优解最后求得目标函数的最大值或最小值13. 若命题“”为真命题,则实数的取值范围为_【答案】【解析】【分析】根据全称命题是真命题可知判别式小于零,即得结果.【详解】全称命题是真命题,即在R上恒成立,则判别式,解得或,故答案为:.14. 数列满足,则_.【答案】【解析】【分析】由递推关系可以得到数列是以3为周期的周期数列,进而得解.【详解】解:由已知,故,,数列是以3为周期的周期数列,,故答案为:.【点睛】本题考查根据数列的对推关系求数列的特定项,关键是利用递推关系得到数列的周期性,

9、进而求解.三解答题15. 已知等比数列中,且是和的等差中项.(1)求数列的通项公式;(2)若数列满足求的前n项和【答案】(1);(2).【解析】【分析】(1)设等比数列的公比为,则,即,可求出,得出答案.(2)由(1)有,然后分组利用等差数列和等比数列的前n项和公式可求和.【详解】解:(1)设等比数列的公比为,又则由于是和的等差中项,得,即,解得所以,(2)16. 已知数列的前项和为,且(1)求数列的通项公式;(2)求数列前项和【答案】(1),;(2).【解析】【分析】(1)根据与的关系进行求解即可;(2)由(1)得出数列的通项公式,再由裂项相消求和法得出【详解】(1)当时,;当时,若时,故,

10、(2)依题意,故17. 已知函数,其中,是自然对数的底数.(1)当时,求函数在区间的零点个数;(2)若对任意恒成立,求实数的取值范围.【答案】(1)1个;(2).【解析】【分析】(1)求导得到函数的单调性,再利用零点存在性定理得解(2)分离参变量,不等式恒成立转化为求函数的最值得解【详解】(1),故递增,又,故在上存在唯一零点因此在区间的零点个数是1个;(2),恒成立,即,恒成立令,则,令,时,时,故在递减,递增,因此所以,故在递增故,因此.【点睛】不等式恒成立问题解决思路:一般参变分离、转化为最值问题.18. 已知点A(0,2),椭圆E: (ab0)的离心率为,F是椭圆E的右焦点,直线AF的

11、斜率为,O为坐标原点. (1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当OPQ的面积最大时,求l的方程.【答案】(1) (2) 【解析】试题分析:设出,由直线的斜率为求得,结合离心率求得,再由隐含条件求得,即可求椭圆方程;(2)点轴时,不合题意;当直线斜率存在时,设直线,联立直线方程和椭圆方程,由判别式大于零求得的范围,再由弦长公式求得,由点到直线的距离公式求得到的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出值,则直线方程可求.试题解析:(1)设,因为直线的斜率为,所以,. 又解得,所以椭圆的方程为.(2)解:设由题意可设直线的方程为:,联立消去得,当,所以,即或时.所以点到直线的距离所以,设,则,当且仅当,即,解得时取等号,满足所以的面积最大时直线的方程为:或.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3