ImageVerifierCode 换一换
格式:DOC , 页数:24 ,大小:2.03MB ,
资源ID:8572      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-8572-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(上海市17区县2013届高三一模(数学文科)分类汇编:专题四 数列 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

上海市17区县2013届高三一模(数学文科)分类汇编:专题四 数列 WORD版含答案.doc

1、专题四 数列汇编2013年3月(杨浦区2013届高三一模 文科)16若无穷等比数列的前项和为,首项为,公比为,且, (),则复数在复平面上对应的点位于 ( ) 第一象限 第二象限 第三象限 第四象限16;(闵行区2013届高三一模 文科)18数列满足,若数列的前项和为,则的值为 答 ( )(A) (B) (C) (D)(文)数列满足,若数列的前项和为,则的值为 答 ( ) (A) (B) (C) (D) 18D(虹口区2013届高三一模)18、数列满足,其中,设,则等于( ) 18、C;(奉贤区2013届高三一模)17、(理)已知是等差数列的前n项和,且,有下列四个命题,假命题的是( )A公差

2、; B在所有中,最大;C满足的的个数有11个; D;来源:Z_xx_k.Com 17 理C (奉贤区2013届高三一模)17、(文)已知是等差数列的前n项和,且,则下列结论错误的是( )A和均为的最大值. B;C公差; D;文D (金山区2013届高三一模)10A、B、C三所学校共有高三学生1500人,且A、B、C三所学校的高三学生人数成等差数列,在一次联考后,准备用分层抽样的方法从所有高三学生中抽取容量为120的样本,进行成绩分析,则应从B校学生中抽取_人 1040 (浦东新区2013届高三一模 文科)17若,的方差为,则,的方差为( )来源:Z。xx。k.Com (普陀区2013届高三一模

3、 文科)6. 若等差数列的前项和为,则数列的通项公式为 . 6.()(杨浦区2013届高三一模 文科)8. 设数列()是等差数列.若和是方程的两根,则数列的前 项的和_8. 2013; (浦东新区2013届高三一模 文科)14共有种排列,其中满足“对所有 都有”的不同排列有 54 种.(奉贤区2013届高三一模)14、(理)设函数,是公差为的等差数列,则 14理(杨浦区2013届高三一模 文科)18. 已知数列是各项均为正数且公比不等于的等比数列(). 对于函数,若数列为等差数列,则称函数为“保比差数列函数”. 现有定义在上的如下函数:, , , ,则为“保比差数列函数”的所有序号为 ( )

4、18. (嘉定区2013届高三一模 文科)4一组数据,的平均数是,则这组数据的方差是_ 4(浦东新区2013届高三一模 文科)7等差数列中,则该数列的前项的和 .(黄浦区2013届高三一模 文科)4若数列的通项公式为,则 4; (静安区2013届高三一模 文科)11 (文)数列的前项和为(),对任意正整数,数列的项都满足等式,则= . 11(文);(闵行区2013届高三一模 文科)14 (文)如下图,对大于或等于2的正整数的次幂进行如下方式的“分裂”(其中):例如的“分裂”中最小的数是,最大的数是;若的“分裂”中最小的数是,则 . 14文 (嘉定区2013届高三一模 文科)5在等差数列中,从第

5、项开始为正数,则公差的取值范围是_5 (静安区2013届高三一模 文科)2等比数列()中,若,则 . 264; (静安区2013届高三一模 文科)16(文)等差数列中,已知,且,则数列前项和()中最小的是( )(A) 或 (B) (C) (D)(文)同理1516(文)C;(嘉定区2013届高三一模 文科)14在数列中,若存在一个确定的正整数,对任意满足,则称是周期数列,叫做它的周期已知数列满足,(),当数列的周期为时,则的前项的和_14(静安区2013届高三一模 文科)3 (文)求和:= .()(文)(金山区2013届高三一模)14若实数a、b、c成等差数列,点P(1, 0)在动直线l:ax+

6、by+c=0上的射影为M,点N(0, 3),则线段MN长度的最小值是 14(虹口区2013届高三一模)9、在等比数列中,已知,则 9、; (青浦区2013届高三一模)8若三个互不相等的实数成等差数列,适当交换这三个数的位置后变成一个等比数列,则此等比数列的公比为 (写出一个即可)(奉贤区2013届高三一模)6、设无穷等比数列的前n项和为Sn,首项是,若Sn,则公比的取值范围是 6(崇明县2013届高三一模)13、数列满足,则的前60项和等于. 13、1830 (虹口区2013届高三一模)12、等差数列的前项和为,若,则 12、10; (长宁区2013届高三一模)7、从数列中可以找出无限项构成一

7、个新的等比数列,使得该新数列的各项和为,则此数列的通项公式为 7、 (宝山区2013届期末)11.若数列的通项公式是,则 =_.(崇明县2013届高三一模)9、数列的通项公式是,前项和为,则. 9、 (长宁区2013届高三一模)3、已知口袋里装有同样大小、同样质量的个小球,其中个白球、个黑球,则从口袋中任意摸出个球恰好是白黑的概率为 . (结果精确到) 3、 (宝山区2013届期末)15.现有8个人排成一排照相,其中甲、乙、丙三人两两不相邻的排法的种数为( C)(A) (B) (C) (D)(青浦区2013届高三一模)20(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分

8、.已知数列满足 (1)设证明:数列为等差数列,并求数列的通项公式; (2)求数列的前项和解:(1),2分 为等差数列又,4分6分(2)设,则310分 14分 (金山区2013届高三一模)23(本题满分18分,第1小题4分,第2小题6分,第3小题8分)已知数列an满足,(其中0且1,nN*),为数列an的前项和 (1) 若,求的值;(2) 求数列an的通项公式;(3) 当时,数列an中是否存在三项构成等差数列,若存在,请求出此三项;若不存在,请说明理由23解:(1) 令,得到,令,得到。2分由,计算得4分(2) 由题意,可得: ,所以有 ,又,5分得到:,故数列从第二项起是等比数列。7分又因为,

9、所以n2时,8分所以数列an的通项10分(3) 因为 所以11分假设数列an中存在三项am、ak、ap成等差数列,不防设mkp2,因为当n2时,数列an单调递增,所以2ak=am+ap即:2()4k2 = 4m2 + 4p2,化简得:24k - p = 4mp+1即22k2p+1=22m2p+1,若此式成立,必有:2m2p=0且2k2p+1=1,故有:m=p=k,和题设矛盾14分假设存在成等差数列的三项中包含a1时,不妨设m=1,kp2且akap,所以2ap = a1+ak ,2()4p2 = + ()4k2,所以24p2= 2+4k2,即22p4 = 22k5 1因为k p 2,所以当且仅当

10、k=3且p=2时成立16分因此,数列an中存在a1、a2、a3或a3、a2、a1成等差数列18分(浦东新区2013届高三一模 文科)22(本小题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)定义数列,如果存在常数,使对任意正整数,总有成立,那么我们称数列为“摆动数列”(1)设,判断、是否为“摆动数列”,并说明理由;(2)设数列为“摆动数列”,求证:对任意正整数,总有成立;(3)设数列的前项和为,且,试问:数列是否为“摆动数列”,若是,求出的取值范围;若不是,说明理由.解:(1)假设数列是“摆动数列”,即存在常数,总有对任意成立,不妨取时,则,取时,则,显然常数不存在,所以数

11、列不是“摆动数列”;2分而数列是“摆动数列”,.由,于是对任意成立,所以数列是“摆动数列”.4分(2)由数列为“摆动数列”,即存在常数,使对任意正整数,总有成立.即有成立.则,6分来源:学+科+网所以,7分同理,8分所以.9分因此对任意的,都有成立.10分(3)当时,当时,综上,12分即存在,使对任意正整数,总有成立,所以数列是“摆动数列”;14分当为奇数时递减,所以,只要即可,当为偶数时递增,只要即可.15分综上.所以数列是“摆动数列”,的取值范围是.16分(长宁区2013届高三一模)23(本题满分18分) (理) 已知函数时,的值域为,当时,的值域为,依次类推,一般地,当时,的值域为,其中

12、k、m为常数,且(1)若k=1,求数列的通项公式;(2)若m=2,问是否存在常数,使得数列满足若存在,求k的值;若不存在,请说明理由;(3)若,设数列的前n项和分别为Sn,Tn,求(文)设,等差数列中,记=,令,数列的前n项和为.(1)求的通项公式和;(2)求证:;(3)是否存在正整数,且,使得成等比数列?若存在,求出的值,若不存在,说明理由.23、(理)解:(1)因为所以其值域为 2分于是 4分又6分(2)因为所以8分法一:假设存在常数,使得数列,10分得符合。12分法二:假设存在常数k0,使得数列满足当k=1不符合。7分当,9分则当 12分(3)因为所以的值域为 13分于是则 14分因此是

13、以为公比的等比数列,又则有 16分 进而有18分(文)解:(1)设数列的公差为,由,.解得,=3 , 2分 4分, Sn=. 6分(2) 8分 10分(3)由(2)知, ,成等比数列. 12分 即 当时,7,=1,不合题意;当时,=16,符合题意;当时,无正整数解;当时,无正整数解;当时,无正整数解;当时,无正整数解;15分当时, ,则,而,所以,此时不存在正整数m,n,且1mn,使得成等比数列. 17分综上,存在正整数m=2,n=16,且1mn,使得成等比数列. 18分 另解: (3)由(2)知, , 成等比数列. , 12分取倒数再化简得 当时,=16,符合题意; 14分, 而, 所以,此

14、时不存在正整数m、n , 且1mn,使得成等比数列. 17分 综上,存在正整数m=2,n=16,且1mn,使得成等比数列. 18分(虹口区2013届高三一模)22、(本题满分16分)数列的前项和记为,且满足(1)求数列的通项公式;(2)求和;(3)设有项的数列是连续的正整数数列,并且满足:问数列最多有几项?并求这些项的和22、(16分)解:(1)由得,相减得,即又,得,数列是以1为首项2为公比的等比数列,5分(2)由(1)知10分(3)由已知得又是连续的正整数数列,上式化为又,消得,由于,时,的最大值为9.此时数列的所有项的和为16分(崇明县2013届高三一模)21、(本题14分,第(1)小题

15、6分,第(2)小题8分) 已知数列,记, , ,并且对于任意,恒有成立(1)若,且对任意,三个数组成等差数列,求数列的通项公式;(2)证明:数列是公比为的等比数列的充分必要条件是:对任意,三个数组成公比为的等比数列21、解:(1) ,所以为等差数列。 (2)(必要性)若数列是公比为q的等比数列,则,所以A(n)、B(n)、C(n)组成公比为q的等比数列。(充分性):若对于任意,三个数组成公比为的等比数列,则,于是得即 由有即,从而.来源:学科网ZXXK因为,所以,故数列是首项为,公比为的等比数列。 综上,数列是公比为q的等比数列的充要条件是对任意的,都有A(n)、B(n)、C(n)组成公比为q

16、的等比数列。(宝山区2013届期末)23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分已知定义域为R的二次函数的最小值为0,且有,直线被的图像截得的弦长为,数列满足, (1)求函数的解析式;(2)求数列的通项公式;(3)设,求数列的最值及相应的 23 解:(1)设,则直线与图像的两个交点为(1,0), 2分 , 4分 (2) 5分 6分 数列是首项为1,公比为的等比数列8分 10分 (3)令, 则12分,的值分别为,经比较距最近, 当时,有最小值是,15分当时,有最大值是0 18分(奉贤区2013届高三一模)22、(文)等比数列满足,数列满足(1)求

17、的通项公式;(5分)(2)数列满足,为数列的前项和求;(5分)(3)是否存在正整数,使得成等比数列?若存在,求出所有 的值;若不存在,请说明理由(6分)22、解:(1)解:,所以公比 2分计算出 3分 4分 5分(2) 6分于是 8分= 10分(3)假设否存在正整数,使得成等比数列,则, 12分可得, 由分子为正,解得, 由,得,此时, 当且仅当,时,成等比数列。 16分说明:只有结论,时,成等比数列。若学生没有说明理由,则只能得 13分(黄浦区2013届高三一模 文科)20(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分在ABC中,角A, B, C的对边分别为a, b,

18、 c,且A, B, C成等差数列(1)若,且,求的值;(2)若,求的取值范围20(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分解:(1)A、B、C成等差数列,又, 2分 由得, 4分又由余弦定理得, 6分由、得, 8分(2) 11分由(1)得, 由且,可得故,所以,即的取值范围为 14分(嘉定区2013届高三一模 文科)22(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分设等差数列的前项和为,且,数列的前项和为,满足(1)求数列的通项公式;(2)写出一个正整数,使得是数列的项;(3)设数列的通项公式为,问:是否存在正整数和(),使

19、得,成等差数列?若存在,请求出所有符合条件的有序整数对;若不存在,请说明理由22(本题满分16分,第1小题4分,第2小题6分,第3小题6分)(1)设数列的首项为,公差为,由已知,有 ,(2分)解得,(3分)所以的通项公式为()(4分)(2)当时,所以(1分)由,得,两式相减,得,故,(2分)所以,是首项为,公比为的等比数列,所以(3分),(4分)要使是中的项,只要即可,可取(6分)(只要写出一个的值就给分,写出,也给分)(3)由(1)知,(1分)要使,成等差数列,必须,即,(2分)化简得(3分)因为与都是正整数,所以只能取,(4分)当时,;当时,;当时,(5分) 综上可知,存在符合条件的正整数

20、和,所有符合条件的有序整数对为:,(6分)(静安区2013届高三一模 文科)(文)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分已知数列的递推公式为(1)令,求证:数列为等比数列;(2)求数列的前 n项和.(2)当MN在矩形区域滑动时,所以有;8分当MN在三角形区域滑动时,S=.因而,当(米)时,S得到最大值,最大值S=(平方米). , S有最大值,最大值为平方米. 12分(文)解:(1),又,所以(),所以,数列是以1为首项3为公比的等比数列6分(2),8分所以数列的前 n项和= 14分(闵行区2013届高三一模 文科)23.(文)(本题满分18分)本题共有3个小题,

21、第1小题满分5分,第2小题满分5分,第3小题满分8分设数列的各项均为正数,前项和为,已知(1)证明数列是等差数列,并求其通项公式;(2)是否存在,使得,若存在,求出的值;若不存在请说明理由;(3)证明:对任意,都有解: 23. 解(文)(1),当时,两式相减得, 2分,又,是以为首项,为公差的等差数列2分 1分(2) 由(1)知, 2分假设正整数满足条件, 则 , 解得; 3分(3) 2分于是 2分 3分 1分(松江区2013届高三一模 文科)23(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分已知递增的等差数列的首项,且、成等比数列(1)求数列的通项公

22、式;(2)设数列对任意,都有成立,求的值(3)在数列中,且满足,求下表中前行所有数的和. 23解:(1)是递增的等差数列,设公差为 1分、成等比数列, 2分由 及得 3分 4分(2), 对都成立当时,得 5分当时,由,及得,得 7分 8分 10分(3) 又 13分 14分第行各数之和16分表中前行所有数的和 18分(杨浦区2013届高三一模 文科)23(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 设数列满足且(),前项和为已知点, ,都在直线上(其中常数且,, ),又 (1)求证:数列是等比数列; (2)若,求实数,的值; (3)如果存在、,使得点

23、和点都在直线上问 是否存在正整数,当时,恒成立?若存在,求出的最小值,若不存在,请说明理由23(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.(1)因为点都在直线上,所以,得, 2分其中 3分因为常数,且,所以为非零常数所以数列是等比数列 4分(2)由,得, 7分所以,得 8分由在直线上,得, 9分令得 10分(3)由知恒成立等价于因为存在、,使得点和点都在直线上由与做差得: 12分易证是等差数列,设其公差为,则有,因为,所以,又由,而得得 即:数列是首项为正,公差为负的等差数列,所以一定存在一个最小自然数, 16分使,, 即 解得 因为,所以,即存在

24、自然数,其最小值为,使得当 时,恒成立 18分(其它解法可参考给分)(闸北区2013届高三一模 文科)18(文)(本题满分18分,第1小题满分6分,第2小题满分6分,第3小题满分6分)若数列满足:对于,都有(常数),则称数列是公差为的准等差数列如:若 则是公差为的准等差数列(1)求上述准等差数列的第项、第项以及前项的和;(2)设数列满足:,对于,都有求证:为准等差数列,并求其通项公式;(3)设(2)中的数列的前项和为,若,求的取值范围18(文)解:(1), (2分) (4分)(2) -得 所以,为公差为2的准等差数列 (2分)来源:学|科|网Z|X|X|K当为奇数时,; (2分)当为偶数时, (2分) (3)解一:在中,有32各奇数项,31各偶数项,所以, (4分), (2分)解二:当为偶数时, 将上面各式相加,得 (4分), (2分) 高考资源网%

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3