1、京改版八年级数学上册第十二章三角形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,B,C,E,F四点在一条直线上,下列条件能判定与全等的是()ABCD2、已知ABC的三边分别是a,b,c,且
2、满足|a-2|+(c-4)2=0,则以a,b,c为边可构成()A以c为斜边的直角三角形B以a为斜边的直角三角形C以b为斜边的直角三角形D有一个内角为的直角三角形3、下列三角形中,等腰三角形的个数是()A4个B3个C2个D1个4、如图,在和中,则()A30B40C50D605、如图,在四边形ABCD中,A=60,B=D=90,AD=8,AB=7,则BC+CD等于()A6B5C4D36、下列说法:若,则为的中点若,则是的平分线,则若,则,其中正确的有()A1个B2个C3个D4个7、下列四组数中,是勾股数的是()A5,12,13B4,5,6C2,3,4D1,8、若三角形的三边为a,b,c、满足a2+
3、b2+c2+506a+8b+10c,此三角形的形状是()A锐角三角形B直角三角形C钝角三角形D不确定9、如图所示,是的边上的中线,cm,cm,则边的长度可能是()A3cmB5cmC14cmD13cm10、等腰三角形的一个内角是80,则它的底角是()A50B80C50或80D20或80第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有_种2、如图,在ABC中,A=60,BD、CD分别平分ABC、ACB,M、N、Q分别在DB、DC、BC的延长
4、线上,BE、CE分别平分MBC、BCN,BF、CF分别平分EBC、ECQ,则F=_3、如图,将分别含有、角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为,则图中角的度数为_4、若直角三角形的一个锐角为,则另一个锐角等于_5、我们定义:一个三角形最小内角的角平分线将这个三角形分割得到的两个三角形它们的面积之比称为“最小角割比”(),那么三边长分别为7,24,25的三角形的最小角割比是_三、解答题(5小题,每小题10分,共计50分)1、如图,中,的垂直平分线分别交,于点,且求证:;若,求的长2、已知:中,BC边上的高,求BC3、如图,点E在CD上,BC与AE交于点F,AB=CB,BE=B
5、D,1=2(1)求证:;(2)证明:1=34、如图,在45的正方形网格中,每个小正方形的顶点称为格点,小正方形的边长均为1,点A、B均在格点上,以AB为边画等腰ABC,要求点C在格点上(1)在图、图中画出两种不同形状的等腰三角形ABC(2)格点C的不同位置有 处5、如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B作BFAE交ED于F,且EM=FM(1)若AE=5,求BF的长;(2)若AEC=90,DBF=CAE,求证:CD=FE-参考答案-一、单选题1、A【解析】【分析】根据全等三角形的判定条件逐一判断即可【详解】解:A、,即在和中,故A符合题意;B、,再由,不可
6、以利用SSA证明两个三角形全等,故B不符合题意;C、,再由,不可以利用SSA证明两个三角形全等,故C不符合题意;D、,再由,不可以利用AAA证明两个三角形全等,故D不符合题意;故选A【考点】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键2、B【解析】【分析】利用非负数的性质求得a、b、c的数值,利用勾股定理的逆定理判定三角形的形状即可【详解】解:由题意可得:a=,b=2,c=4,22+42=20,()220,即b2+c2=a2,所以ABC是以a为斜边的直角三角形故选B【考点】本题考查了非负数的性质和勾股定理的逆定理,根据非负数的性质求得a、b、c的值是解决此题的关键3、B
7、【解析】【分析】根据题图所给信息,根据边或角分析即可【详解】解:第一个图形中有两边相等,故第一个三角形是等腰三角形, 第二个图形中的三个角分别为50,35,95,故第二个三角形不是等腰三角形;第三个图形中的三个角分别为100,40,40,故第三个三角形是等腰三角形;第四个图形中的三个角分别为90,45,45,故第四个三角形是等腰三角形;故答案为:B【考点】本题考查了等腰三角形的判定,掌握等腰三角形的判定是解题的关键4、D【解析】【分析】由题意可证,有,由三角形内角和定理得,计算求解即可【详解】解:ABC和ADC均为直角三角形在和中故选D【考点】本题考查了三角形全等,三角形的内角和定理解题的关键
8、在于找出角度的数量关系5、B【解析】【分析】延长DC至E,构建直角ADE,解直角ADE求得DE,BE,根据BE解直角CBE可得BC,CE,进而求解【详解】如图,延长AB、DC相交于E,在RtADE中,可求得AE2-DE2=AD2,且AE=2AD,计算得AE=16,DE=8,于是BE=AE-AB=9,在RtBEC中,可求得BC2+BE2=CE2,且CE=2BC,BC=3,CE=6,于是CD=DE-CE=2,BC+CD=5故选B【考点】本题考查了勾股定理的运用,考查了30角所对的直角边是斜边的一半的性质,本题中构建直角ADE求BE,是解题的关键6、A【解析】【分析】根据直线中点、角平分线、有理数大
9、小比较以及绝对值的性质,逐一判定即可.【详解】当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于AOB的内部时候,此结论成立,故错误;当为负数时,故错误;若,则,故正确;故选:A.【考点】此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.7、A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方【详解】解:A、52+122132,都是正整数,是勾股数,故此选项符合题意;B、42+5262,不是勾股数,故此选项不合题意;C、22+3242,不是勾股数,故此选项不合题意;D、,不是正整数,不是勾
10、股数,故此选项不合题意;故选:A【考点】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a,b,c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数8、B【解析】【分析】已知等式变形后,利用完全平方公式化简,利用非负数的性质求出a,b,c的值,即可做出判断【详解】解:根据题意得:a2+b2+c2+50-6a-8b-10c=0,(a3)2(b5)2(c5)20,a30,b50,c50,a3,b4,c5,a2b2=c2,则三角形形状为直角三角形故选:B【考点】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键9、B【解析】【分析】延长AD至M使DM=AD,连接CM,
11、根据SAS得出,得出AB=CM=4cm,再根据三角形的三边关系得出AC的范围,从而得出结论【详解】解:延长AD至M使DM=AD,连接CM,是的边上的中线,BD=CD,ADB=CDM,,MC=AB=5cm,AD=DM=4cm,AM=8cm在中,即:3AC13,故选:B【考点】本题考查了全等三角形的判定与性质以及三角形的三边关系,根据三角形的三边关系找出AC长度的取值范围是解题的关键10、C【解析】【分析】先分情况讨论:80是等腰三角形的底角或80是等腰三角形的顶角,再根据三角形的内角和定理进行计算【详解】解:当80是等腰三角形的顶角时,则顶角就是80,底角为(18080)=50;当80是等腰三角
12、形的底角时,则顶角是180802=20等腰三角形的底角为50或80;故选:C【考点】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键二、填空题1、3【解析】【详解】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为32、15#15度【解析】【分析】先由BD、CD分别平分ABC、ACB得到DBC=ABC,DCB=ACB,在ABC中根据三角形内角和定理得DBC+DCB=(ABC+ACB)=(180-A)=60,则根据平角定理得到MBC+NCB=300;再由BE、CE分别平分MBC、BCN
13、得5+6=MBC,1=NCB,两式相加得到5+6+1=(NCB+NCB)=150,在BCE中,根据三角形内角和定理可计算出E=30;再由BF、CF分别平分EBC、ECQ得到5=6,2=3+4,根据三角形外角性质得到3+4=5+F,2+3+4=5+6+E,利用等量代换得到2=5+F,22=25+E,再进行等量代换可得到F=E【详解】解:如图:BD、CD分别平分ABC、ACB,A=60,DBC=ABC,DCB=ACB,DBC+DCB=(ABC+ACB)=(180-A)=(180-60)=60,MBC+NCB=360-60=300,BE、CE分别平分MBC、BCN,5+6=MBC,1=NCB,5+6
14、+1=(NCB+NCB)=150,E=180-(5+6+1)=180-150=30,BF、CF分别平分EBC、ECQ,5=6,2=3+4,3+4=5+F,2+3+4=5+6+E,即2=5+F,22=25+E,2F=E,F=E=30=15故答案为:15【考点】本题考查了三角形内角和定理、角平分线、三角形外角性质,解题的关键是掌握三角形内角和是1803、#140度【解析】【分析】如图,首先标注字母,利用三角形的内角和求解,再利用对顶角的相等,三角形的外角的性质可得答案【详解】解:如图,标注字母,由题意得: 故答案为:【考点】本题考查的是三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关
15、键4、75【解析】【分析】根据三角形内角和定理计算即可【详解】解:另一个锐角为15,另一个锐角为180-90-15=75,故答案为:75【考点】本题考查了直角三角形的性质,解题的关键是掌握直角三角形两锐角互余5、【解析】【分析】根据题意作出图形,然后根据角平分线的性质得到,再根据三角形的面积和最小角割比的定义计算即可【详解】解:如图示,则,根据题意,作的角平分线交于点,过点,作交于点,过点,作交于点,则,则()故答案是:【考点】本题考查了三角形角平分线的性质和三角形的面积计算,熟悉相关性质是解题的关键三、解答题1、(1)见解析;(2)4【解析】【分析】(1)连接CD,根据中垂线的性质可得CD=
16、BD,从而结合题意运用勾股定理得逆定理即可证明;(2)根据题意先求出AD,BD,再由(1)的结论在中运用勾股定理计算即可【详解】证明:连接的垂直平分线分别交,于点,是直角三角形,且解:,【考点】本题考查中垂线的性质,勾股定理及其逆定理,理解勾股定理的逆定理和中垂线的性质是解题关键2、4或14【解析】【分析】分情况讨论,如图所示:利用勾股定理分别求出的长,从而得出的长度【详解】解:在RtABD中,BD,在RtADC中,CD,故BCBDCD14;在RtABD中,BD,在RtADC中,CD,故BCBDCD4,BC的长为或4或14【考点】此题考查了勾股定理,求解关键是利用勾股定理分别求出BD和CD,注
17、意不要漏解3、(1)证明见解析;(2)证明见解析【解析】【分析】(1)先根据角的和差可得,再根据三角形全等的判定定理即可得证;(2)先根据三角形全等的性质可得,再根据对顶角相等可得,然后根据三角形的内角和定理、等量代换即可得证【详解】(1),即,在和中,;(2)由(1)已证:,由对顶角相等得:,又,【考点】本题考查了三角形全等的判定定理与性质、对顶角相等、三角形的内角和定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键4、(1)见解析;(2)3【解析】【分析】(1)根据等腰三角形的定义,利用勾股定理、数形结合的思想解决问题即可(2)根据画出的图形判断即可【详解】解:(1)所求作的ABC
18、如图所示;(2)在图中再作出符合条件的点C,所以格点C的位置有3处,故答案为3【考点】本题考查了格点中画等腰三角形、等腰三角形的定义、勾股定理,能根据等腰三角形的定义,利用勾股定理、数形结合的思想解决问题是解答的关键5、(1)BF=5;(2)见解析【解析】【分析】(1)证明AEMBFM即可;(2)证明AECBFD,得到EC=FD,利用等式性质,得到CD=FE【详解】(1)BFAE,MFB=MEA,MBF=MAE,EM=FM,AEMBFM,AE=BF,AE=5,BF=5;(2)BFAE,MFB=MEA,AEC=90,MFB=90,BFD=90,BFD=AEC,DBF=CAE,AE=BF,AECBFD,EC=FD,EF+FC=FC+CD,CD=FE【考点】本题考查了平行线的性质,三角形全等的判定和性质,等式的性质,熟练掌握平行线性质,灵活进行三角形全等的判定是解题的关键
Copyright@ 2020-2024 m.ketangku.com网站版权所有