1、1凸n多边形有f(n)条对角线,则凸(n1)边形的对角线的条数f(n1)为()Af(n)n1Bf(n)nCf(n)n1 Df(n)n2解析:选C.边数增加1,顶点也相应增加1个,它与和它不相邻的n2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n1条2用数学归纳法证明“当n为正奇数时,xnyn能被xy整除”的第二步是()A假设n2k1时正确,再推n2k3时正确(其中kN*)B假设n2k1时正确,再推n2k1时正确(其中kN*)C假设nk时正确,再推nk1时正确(其中kN*)D假设nk时正确,再推nk2时正确(其中kN*)解析:选B.因为n为正奇数,所以n2k1(kN*)3用数学
2、归纳法证明:“11)”时,由nk(k1)不等式成立,推理nk1时,左边应增加的项数是_解析:当nk时,要证的式子为1k;当nk1时,要证的式子为12,f(8),f(16)3,f(32),则其一般结论为_解析:因为f(22),f(23),f(24),f(25),所以当n2时,有f(2n).答案:f(2n)(n2,nN*)5求证:(n1)(n2)(nn)2n135(2n1)(nN*)证明:(1)当n1时,等式左边2,右边2,故等式成立;(2)假设当nk(kN*,k1)时等式成立,即(k1)(k2)(kk)2k135(2k1),那么当nk1时,左边(k11)(k12)(k1k1)(k2)(k3)(k
3、k)(2k1)(2k2)2k135(2k1)(2k1)22k1135(2k1)(2k1)这就是说当nk1时等式也成立由(1)(2)可知,对所有nN*等式成立6(2014高考广东卷)设数列an的前n项和为Sn,满足Sn2nan13n24n,nN*,且S315.(1)求a1,a2,a3的值;(2)求数列an的通项公式解:(1)由题意知S24a320,所以S3S2a35a320.又S315,所以a37,S24a3208.又S2S1a2(2a27)a23a27,所以a25,a1S12a273.综上知,a13,a25,a37.(2)由(1)猜想an2n1,下面用数学归纳法证明当n1时,结论显然成立;假设当nk(k1)时,ak2k1,则Sk357(2k1)k(k2)又Sk2kak13k24k,所以k(k2)2kak13k24k,解得2ak14k6,所以ak12(k1)1,即当nk1时,结论成立由知,对于nN*,an2n1.