ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:269.18KB ,
资源ID:856336      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-856336-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(京改版七年级数学上册第三章简单的几何图形定向训练试卷(含答案详解版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

京改版七年级数学上册第三章简单的几何图形定向训练试卷(含答案详解版).docx

1、京改版七年级数学上册第三章简单的几何图形定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法错误的是( )A如果两条直线被第三条直线所截,那么内错角相等B在同一平面内过一点有且仅有一条直线与已

2、知直线垂直C经过直线外一点有且只有一条直线与已知直线平行D连接直线外一点与直线上各点的所有线段中,垂线段最短2、下图中,不可能围成正方体的是()ABCD3、如图,BOD118,COD是直角,OC平分AOB,则AOB的度数是()A48B56C60D324、如图,C、D是线段AB上的两点,且D是线段AC的中点若AB=10cm,BC=4cm,则BD的长为() A6cmB7cmC8cmD9cm5、下列说法正确的是()A大于且小于的角是锐角B大于的角是钝角C大于且小于的角是锐角或钝角D直角既是锐角也是钝角6、下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A用两个钉子可以把木条钉在墙

3、上B植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D为了缩短航程把弯曲的河道改直7、将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()ABCD8、要在一条直线上得到10条不同的线段,至少要在这条直线上选用()个不同的点A20B10C7D59、一个六棱柱,底面边长都是厘米,侧棱长为厘米,这个六棱柱的所有侧面的面积之和是()ABCD10、和是同旁内角,那么等于()ABC或D大小不定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用一个平面去截一个棱柱,截面的边数最多是8,则这个棱柱有_条棱2、如

4、图,以图中的A,B,C,D,E为端点的线段共有_条3、空间两直线的位置关系有_4、已知B是线段AD上一点,C是线段AD的中点,若AD10,BC3,则AB_5、如图,将两块直角三角板的直角顶点重合为如图所示的形状,若,则_三、解答题(5小题,每小题10分,共计50分)1、已知,如图,是内的一条射线,射线平分,射线平分(1)若射线平分,求的度数;(2)若,求的度数2、已知AOB100,BOC60,OM平分AOB,ON平分BOC,求MON的度数3、观察表中的几何体,解答下列问题:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a6 1012棱数b912 18面数c567 (1)补全表中数据;(2)观察表中的数

5、据,推测n棱柱的顶点数为 ,棱数为 ,面数为 (用含n的式子表示)4、小明从处出发向北偏东走了,到达处;小刚也从处出发,向南偏东走了,到达处(1)用表示,画图表示,三处的位置;(2)处在处的_偏_度的方向上,距离处_米;(3)在图上量出处和处之间的距离,再说出小明和小刚两人实际相距多少米5、计算题(1)(2)(3)(4)-参考答案-一、单选题1、A【解析】【分析】分别利用平行线的性质以及垂线的性质分别判断得出答案【详解】A、如果两条直线平行时,被第三条直线所截时,内错角才会是相等,故A选项错误,符合题意;B、在同一平面内过一点有且仅有一条直线与已知直线垂直,正确,不合题意;C、经过直线外一点有

6、且只有一条直线与已知直线平行,正确,不合题意;D、联结直线外一点与直线上各点的所有线段中,垂线段最短,正确,不合题意;故选A【考点】考查了平行公理及推论和垂线的性质,正确把握相关定义是解题关键2、D【解析】【分析】根据题意利用折叠的方法,逐一判断四个选项是否能折成正方体即可【详解】根据题意,利用折叠的方法,A可以折成正方体,B也可以折成正方体,C也可以折成正方体,D有重合的面,不能直接折成正方体故选D【考点】本题考查了正方体表面展开图的应用问题,是基础题3、B【解析】【分析】根据角平分线的定义可知,AOB2AOC2BOC,由COD是直角可得COD90,根据已知条件可求BOC,进一步得到AOB的

7、度数【详解】解:OC平分AOB,AOB2AOC2BOC,COD是直角,COD90,BOD118,BOCBODCOD1189028,AOB2BOC56故选:B【考点】本题主要考查了角的计算,准确应用角平分线的性质计算是关键4、B【解析】【分析】利用线段和的定义和线段中点的意义计算即可【详解】AB=AC+BC,且AB=10,BC=4,AC=6,D是线段AC的中点,AD=DC=AC=3,BD=BC+CD=4+3=7,故选B【考点】本题考查了线段和的意义和线段中点的意义,熟练掌握两个概念并灵活运用进行线段的计算是解题的关键5、A【解析】【分析】根据锐角、直角、钝角的概念逐个判断即可【详解】解:A、大于

8、且小于的角是锐角,故A选项正确;B、大于且小于的角是钝角,故B选项错误;C、大于且小于的角是锐角、直角或钝角,故C选项错误;D、直角既不是锐角也不是钝角,故D选项错误,故选:A【考点】本题考查了锐角、直角、钝角的概念,熟练掌握相关概念是解决本题的关键6、D【解析】【分析】根据直线的性质和线段的性质对各选项进行逐一分析即可【详解】解:A、用两个钉子可以把木条钉在墙上是利用了两点确定一条直线,故本选项不符合题意;B、植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上是利用了两点确定一条直线,故本选项不符合题意;C、打靶的时候,眼睛要与枪上的准星、靶心在同一直线上是利用了两点确定一条直线,故

9、本选项不符合题意;D、为了缩短航程把弯曲的河道改直是利用了两点之间,线段最短,故本选项符合题意故选:D【考点】本题考查了直线和线段的性质,熟知“两点之间,线段最短”是解答此题的关键7、D【解析】【分析】由直棱柱展开图的特征判断即可【详解】解:图中棱柱展开后,两个三角形的面不可能位于同一侧,因此D选项中的图不是它的表面展开图;故选D【考点】本题考查了常见几何体的展开图,解决本题的关键是牢记三棱柱展开图的特点,即其两个三角形的面不可能位于展开图中侧面长方形的同一侧即可8、D【解析】【分析】分别选用5或7或10或20个点时,得到线段的数量即可判断【详解】解:当这条直线上选用5个不同的点时,如图:线段

10、有:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共有10条线段,则在这条直线上应选5个不同点,可得到10条不同的线段,故选:D【考点】本题考查的是线段的条数的确定,正确的识别图形是解题的关键9、C【解析】【分析】根据六棱柱侧面积的公式等于6个矩形面积之和,代入数据即可解出答案【详解】 底面边长都是,侧棱长为,六棱柱侧面积为:故选:C【考点】本题考查了几何体的表(侧)面积,熟练掌握几何体侧面积的求法是解题的关键10、D【解析】【分析】根据同旁内角的定义:两条直线被第三条直线所截,若两个角都在两直线之间,且在第三条直线的同侧,那么这一对角就是同旁内角,进行求解即可【详解】解:题目并未

11、告诉,1和2是属于两条平行线被截的同旁内角,2的度数大小不能确定,故选D【考点】本题主要考查了同旁内角的定义,解题的关键在于能够熟练掌握相关知识进行求解二、填空题1、18【解析】【分析】用平面去截一个棱柱时最多与所有面相交得到截面的边数与棱柱的面数相同,最少与三个面相交得三角形因为截面的边数最多是8,所以棱柱有8个面,这是个六棱柱,一个n棱柱,其棱的数量由多边形的边数或顶点数来决定底面多边形是n条边,则上下两个底面有棱(边)2n条,侧棱有n条,一共有棱3n条由此可见,六棱柱的棱数是18条【详解】解:用平面去截一个棱柱时最多与所有面相交得到截面的边数与棱柱的面数相同,截面的边数最多是8,棱柱有8

12、个面,是六棱柱,有18条棱故答案为:18【考点】此题考查了截一个几何体,解题的关键是知道用一个平面去截一个棱柱时,截面经过棱柱的几个面,得到的截面形状就是几边形2、10【解析】【分析】根据两个点之间可以组成一条线段进行求解即可【详解】解:如图所示:线段有:AC、AD、AE、AB、CD、CE、CB、DE、DB、EB一共10条,故答案为:10【考点】本题主要考查了线段的定义,解题的关键在于能够熟练掌握相关定义3、平行、相交、异面【解析】【分析】当两条直线在同一平面内和不在同一平面内进行分析即可【详解】当两条直线在同一平面内时,位置关系有平行、相交;当两条直线不在同一平面内时,位置关系有异面;故答案

13、为:平行、相交、异面【考点】考查了两条直线的位置关系,解题关键是分当两条直线在同一平面内和不在同一平面内进行分析,注意不要漏掉不在同一平面内的情况4、2或8【解析】【分析】根据题意,正确画出图形,分两种情况讨论:当点B在中点C的左侧时,ABACBC;当点B在中点C的右侧时,ABAC+BC【详解】解:如图,C是线段AD的中点,ACCDAD5,当点B在中点C的左侧时,ABACBC2当点B在中点C的右侧时,ABAC+BC8AB2或8【考点】本题考查线段中点的有关计算注意此类题要分情况画图,然后根据中点的概念以及图形进行相关计算5、43【解析】【分析】由题意可得AOB=COD=90,则可得AOD+BO

14、C=180,即可求得结果【详解】解:AOB=COD=90AOC+BOC+BOD+BOC=180即AOD+BOC=180AOD=137BOC=43,故答案为:43【考点】本题主要考查角的和差关系,根据角的和差关系,列出算式,是解题的关键三、解答题1、 (1)(2)【解析】【分析】(1)先利用角平分线的定义求解 再利用角平分线的定义可得答案;(2)设 再利用角平分线的定义分别表示 再利用列简单方程,再解方程可得答案(1)解: 射线平分, 射线平分,(2)解:设 射线平分, 射线平分, 解得: 【考点】本题考查的是角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键2、20或8

15、0【解析】【详解】注意此题要分两种情况:当OC落在AOB的内部时,当OC落在AOB的外部时;利用角的和差关系计算,分两种情况计算:当OC落在AOB的内部时:OM平分AOB,AOMAOB10050,ON平分BOC,BONBOC6030,MONAOBAOMBON100503020,当OC落在AOB的外部时;OM平分AOB,ON平分BOC,BOMAOB10050,BONBOC6030,MONBOM+BON50+3080综上所述,MON的度数为20或80【考点】此题主要考查了角的计算,做题时要注意分情况讨论,不能片面的考虑一种情况,题目比较典型3、 (1)8,15,8,见解析(2)2n,3n,n+2【

16、解析】【分析】(1)根据四棱柱上面4个顶点,下面四个顶点可以知道四棱柱的顶点数;五棱柱上底面5条棱,下底面5条棱,侧棱5条可以知道五棱柱的棱数;根据六棱柱有6个侧面和2个底面知道六棱柱的面数;(2)根据表格推测即可(1)解:四棱柱上面4个顶点,下面四个顶点,四棱柱的顶点数是8;五棱柱上底面5条棱,下底面5条棱,侧棱5条,五棱柱的棱数是15;六棱柱有6个侧面和2个底面,六棱柱的面数是8;故答案为:8;15;8;名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681012棱数b9121518面数c5678(2)解:n棱柱的顶点数为2n,棱数为3n,面数为n+2,故答案为:2n;3n;n+2【考点】本题主要

17、考查几何体的初步认识,熟练掌握棱柱的概念是解题的关键4、(1)见解析;(2)北,西,;(3)量得处和处之间的距离为,实际相距【解析】【分析】(1)以点A为基准点建立方位角,即可确定点B及点C的位置;(2)以点C为基准点确定点A的位置;(3)利用直尺测量,根据比例尺得到答案【详解】(1)如图:(2)A处在处的北偏西的方向上,距离处;故答案为:北, 50 , 40m ;(3)量得处和处之间的距离为,所以小明和小刚两人实际相距【考点】本题主要考查用方位角和距离表示点的位置正确掌握方位角的表示方法及画法是解题的关键5、 (1)11(2)(3)55(4)【解析】【分析】(1)根据有理数加减运算法则求解即可;(2)根据乘法分配律求解即可;(3)根据有理数的混合运算,结合相关运算法则求解即可;(4)根据角度换算,根据度分运算法则求解即可(1)解:原式;(2)解:原式;(3)解:原式;(4)解:原式【考点】本题考查有理数的混合运算与角度计算,掌握有理数的运算法则及度分之间的换算是解决问题的关键

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1