1、课时作业1数列an的通项公式为an,若an的前n项和为24,则n()A25 B576 C624 D625答案C解析an,所以Sn()()()1,令Sn24得n624.故选C.2数列(1)n(2n1)的前2020项和S2020等于()A2018 B2020 C2017 D2017答案B解析S20201357(220191)(220201)2020.故选B.3已知数列an中的前n项和Snn(n9),第k项满足7ak1020,那么n的最小值是()A7 B8 C9 D10答案D解析an12222n12n1.Sn(211)(221)(2n1)(21222n)n2n1n2,S910131020,Sn102
2、0,n的最小值是10.9(2019长郡中学模拟)已知数列an是公差不为0的等差数列,且满足aaaa,则该数列的前10项和S10()A10 B5 C0 D5答案C解析设等差数列的公差为d(d0),因为aaaa,所以(a4a6)(a4a6)(a7a5)(a7a5),所以2da52da6,于是a5a60,所以S105(a5a6)0.故选C.10(2019揭阳模拟)已知数列an满足2a122a22nann(nN*),数列的前n项和为Sn,则S1S2S3S10()A. B. C. D.答案C解析2a122a22nann(nN*),2a122a22n1an1n1(n2,nN*),2nan1(n2,nN*)
3、,当n1时也满足,故an,故,Sn11,S1S2S3S10,故选C.11(2019福建宁德联考)数列an满足a11,且对任意的m,nN*都有amnamanmn,则等于()A. B. C. D.答案A解析因为数列an满足a11,且对任意的m,nN*都有amnamanmn,所以令m1,得an1an1n,所以an(anan1)(a2a1)a1n(n1)21,所以2,所以22.故选A.12已知数列an的前n项和为Sn,a11,当n2时,an2Sn1n,则S2019的值为()A1009 B1010 C2018 D2019答案B解析因为an2Sn1n,n2,所以an12Snn1,n1,两式相减得an1an
4、1,n2.又a11,所以S2019a1(a2a3)(a2018a2019)1010.故选B.13已知数列an满足an,则数列的前n项和为_答案解析an,4,所求的前n项和为44.14(2019海口模拟)等比数列an的各项均为实数,其前n项和为Sn.已知S3,S6,则a8_.答案32解析设等比数列an的公比为q,则由S62S3,得q1,则S3,S6,解得q2,a1,则a8a1q72732.15(2019保定模拟)设数列an的前n项和为Sn,且a11,anan1(n1,2,3,),则S2n3_.答案解析依题意得S2n3a1(a2a3)(a4a5)(a2n2a2n3)1.16(2020西安模拟)已知
5、数列an的前n项和Sn10nn2,数列bn的每一项都有bn|an|,设数列bn的前n项和为Tn,则T4_,T30_.答案24650解析当n1时,a1S19,当n2时,anSnSn110nn210(n1)(n1)22n11,当n1时也满足,所以an2n11(nN*),所以当n5时,an0,bnan,当n5时,an0,bnan,所以T4S41044224,T30S5a6a7a302S5S302(10552)(1030302)650.17(2019吉林二模)已知各项均为整数的等差数列an,其前n项和为Sn,a11,a2,a3,S41成等比数列(1)求an的通项公式;(2)求数列(1)nan的前2n项
6、和T2n.解(1)各项均为整数的等差数列an,设公差为d,则d为整数,由a11,a2,a3,S41成等比数列,得aa2(1S4),即(12d)2(1d)(36d),解得d2,所以an2n3.(2)由(1),得T2na1a2a3a4a2n1a2n(11)(35)(54n4n3)2222n.18(2019山东莱阳模拟)已知各项均为正数的数列an的前n项和为Sn,nN*,有2Snaan.(1)求数列an的通项公式;(2)令bn,设bn的前n项和为Tn,求证:Tn1.解(1)当n1时,2a1aa1,得a11或0(舍去)当n2时,因为2Snaan,所以2Sn1aan1,由两式相减得anan11(n2),
7、所以数列an是以1为首项,1为公差的等差数列,所以ann,nN*.(2)证明:由(1)得,bn,所以Tnb1b2b3bn11.19(2019广东二模)已知数列an满足a1a2a3an1ann1(nN*)(1)求数列an的通项公式;(2)若bnan,求数列bn的前n项和Sn.解(1)数列an满足a1a2a3an1ann1,则当n2时,a1a2a3an1n,由,得an,当n1时,a12,满足上式所以an.(2)由于an,所以bnan112,则Sn2222n2n1.20(2019天津部分区联考)已知数列an的前n项和为Sn,且an1an2(nN*),a3a412.数列bn为等比数列,且b1a2,b2
8、S3.(1)求an和bn的通项公式;(2)设cn(1)nanbn,求数列cn的前n项和Tn.解(1)由已知,得an1an2,数列an是以2为公差的等差数列a3a412,2a11012,a11,an2n1.设等比数列bn的公比为q,b1a23,b2S3,b23qS39,q3,bn3n.(2)由题意,得cn(1)nanbn(1)n(2n1)3n(2n1)(3)n,Tn1(3)3(3)25(3)3(2n1)(3)n,3Tn1(3)23(3)3(2n3)(3)n(2n1)(3)n1.上述两式相减,得4Tn32(3)2(3)3(3)n(2n1)(3)n13(2n1)(3)n1(3)n1,Tn(3)n1.