ImageVerifierCode 换一换
格式:PPT , 页数:38 ,大小:2.04MB ,
资源ID:853204      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-853204-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021届高三新高考数学人教A版一轮复习课件:第四章第4节 三角函数的图象与性质 .ppt)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021届高三新高考数学人教A版一轮复习课件:第四章第4节 三角函数的图象与性质 .ppt

1、第4节 三角函数的图象与性质考试要求 1.能画出 ysin x,ycos x,ytan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间0,2上的性质(如单调性、最大值和最小值、图象与 x 轴的交点等),理解正切函数在区间2,2 内的单调性.知 识 梳 理 1.用五点法作正弦函数和余弦函数的简图(1)正弦函数 ysin x,x0,2的图象中,五个关键点是:(0,0),2,1,(,0),_,(2,0).(2)余弦函数 ycos x,x0,2的图象中,五个关键点是:(0,1),2,0,_,32,0,(2,1).32,1(,1)2.正弦、余弦、正切函数的图象与性质(下表中kZ)函数

2、 ysin x ycos x ytan x 图象 定义域 R R _ 值域 _ _ R 最小正周期 _ _ _ xR,且 xk21,11,122奇偶性_奇函数递增区间_递减区间_无对称中心_k2,0对称轴方程_无奇函数偶函数2k2,2k22k,2kk2,k22k2,2k322k,2k(k,0)k2,0 xk 2xk常用结论与微点提醒1.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.正切曲线相邻两对称中心之间的距离是半个周期.2.三角函数中奇函数一般可化为 yAsin x 或 yAtan x 的形式,偶函数一般可化为yAcos

3、xb 的形式.3.对于 ytan x 不能认为其在定义域上为增函数,而是在每个区间k2,k2(kZ)内为增函数.诊 断 自 测 1.判断下列结论正误(在括号内打“”或“”)(1)余弦函数ycos x的对称轴是y轴.()(2)正切函数ytan x在定义域内是增函数.()(3)已知yksin x1,xR,则y的最大值为k1.()(4)ysin|x|是偶函数.()解析(1)余弦函数ycos x的对称轴有无穷多条,y轴只是其中的一条.(2)正切函数 ytan x 在每一个区间k2,k2(kZ)上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k0时,ymaxk1;当k0时,ymaxk1.答

4、案(1)(2)(3)(4)2.(新教材必修第一册P213T3改编)下列函数中,是奇函数的是()A.y|cos x1|B.y1sin x C.y3sin(2x)D.y1tan x 解析 选项A中的函数是偶函数,选项B,D中的函数既不是奇函数,也不是偶函数;因为y3sin(2x)3sin 2x,所以是奇函数,选C.答案 C 3.(老教材必修 4P36T2 改编)函数 y32cos12x6 3 的最小正周期为 T,最大值为 A,则()A.T A32B.T2 A92C.T4 A92D.T2 A32 解析 T2124,A32392.答案 C4.(2017全国卷)函数 f(x)15sinx3 cosx6

5、的最大值为()A.65B.1 C.35D.15 解析 cos x6 cos2x3 sinx3,则 f(x)15sinx3 sinx3 65sinx3,函数的最大值为65.答案 A5.(2019北京卷)函数f(x)sin22x的最小正周期是_.解析 由降幂公式得f(x)sin2 2x1cos 4x212cos 4x12,所以最小正周期T242.答案 26.(2018江苏卷)已知函数 ysin(2x)22 的图象关于直线 x3对称,则 的值是_.解析 由函数 ysin(2x)22 的图象关于直线 x3对称,得 sin23 1.所以23 2k(kZ),所以 6k(kZ),又20,cos x120,即

6、sin x0,cos x12,解得2kx2k(kZ),32kx32k(kZ),所以 2kx32k(kZ),所以函数的定义域为x|2kx32k,kZ.答案(1)x|x4k,且x2k,kZ(2)x|2k0)图象的一个对称中心为 M9,0,距离点 M最近的一条对称轴为直线 x518,则 _.解析(1)因为函数 f(x)asin xcos x(a 为常数,xR)的图象关于直线 x6对称,所以 f(0)f3,所以 1 32 a12,a 33,所以 g(x)sin x 33 cos x2 33 sinx6,函数 g(x)的对称轴方程为 x6k2(kZ),即 xk3(kZ),当 k0 时,对称轴为直线 x3

7、,所以 g(x)sin xacos x 的图象关于直线 x3对称.答案(1)C(2)3(2)函数 f(x)sin x 3cos x2sinx3,因为图象的对称中心为 M9,0,距离点 M 最近的一条对称轴为 x518,所以5189T4,即 T23.故 2T 3.规律方法 1.对于可化为 f(x)Asin(x)形式的函数,如果求 f(x)的对称轴,只需令 x2k(kZ),求 x 即可;如果求 f(x)的对称中心的横坐标,只需令xk(kZ),求 x 即可.2.对于可化为 f(x)Acos(x)形式的函数,如果求 f(x)的对称轴,只需令 xk(kZ),求 x;如果求 f(x)的对称中心的横坐标,只

8、需令 x2k(kZ),求 x 即可.【训练 3】(1)(角度 1)已知函数 f(x)sin(x)0,|2 的最小正周期为 4,且xR,有 f(x)f3 成立,则 f(x)图象的一个对称中心坐标是()A.23,0B.3,0C.23,0D.53,0(2)(角度 2)(2020武汉调研)设函数 f(x)sin12x 3cos12x|2 的图象关于 y轴对称,则()A.6B.6C.3D.3 解析(1)由 f(x)sin(x)的最小正周期为 4,得 12.因为 f(x)f3 恒成立,所以 f(x)maxf3,即12322k(kZ),又|2,所以 3,故 f(x)sin12x3.令12x3k(kZ),得

9、x2k23(kZ),故 f(x)图象的对称中心为2k23,0(kZ),当 k0 时,f(x)图象的对称中心坐标为23,0.(2)f(x)sin12x 3cos12x 2sin12x3,由题意可得 f(0)2sin3 2,即 sin3 1,32k(kZ),56 k(kZ).|2,k1 时,6.答案(1)A(2)A考点四 三角函数的单调性 多维探究 角度1 求三角函数的单调区间【例 41】(1)(2020岳阳质检)函数 ysinx23,x2,2的单调递增区间是()A.53,3B.56,76C.3,2D.23,43(2)函数 f(x)tan2x3 的单调递增区间是_.解析(1)由 2k2x232k2

10、(kZ)得,4k53 x4k3(kZ),又 x2,2,所以53 x3.故 ysinx23,x2,2的单调递增区间为53,3.故选 A.(2)由 k22x3k2(kZ),得k2 512x0,函数 f(x)sinx4 在2,上单调递减,则 的取值范围是_.解析 由2x0 得2 4x40,kZ,得 k0,所以 12,54.答案 12,54规律方法 对于已知函数的单调区间的某一部分确定参数的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【训练 4】(1)(角度 1)已知函数 f

11、(x)2sin42x,则函数 f(x)的单调递减区间为()A.38 2k,78 2k(kZ)B.82k,38 2k(kZ)C.38 k,78 k(kZ)D.8k,38 k(kZ)(2)(角度 2)(2018全国卷)若 f(x)cos xsin x 在a,a是减函数,则 a 的最大值是()A.4B.2C.34D.解析(1)函数的解析式可化为 f(x)2sin2x4.由 2k22x42k2(kZ),得8kx38 k(kZ),即函数 f(x)的单调递减区间为8k,38 k(kZ).(2)f(x)cos xsin x 2cosx4,由题意得 a0,故a40,解得 0a4,所以 a 的最大值是4.答案(1)D(2)A

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3