ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:1.25MB ,
资源ID:85201      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-85201-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(云南省楚雄师范学院附属中学2020-2021学年高二上学期期中考试数学试题 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

云南省楚雄师范学院附属中学2020-2021学年高二上学期期中考试数学试题 WORD版含答案.doc

1、楚雄师范学院附属高中2020-2021学年高二上学期期中考试数学试卷出题人: 考试时间:120分钟 总分:150分注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上. 一、选择题(每小题5分,共60分)1.设集合,则( )A.B.C.D.2.直线的斜率是( )ABCD23.圆的圆心坐标和半径分别为( )A. 和 B. 和 C. 和 D. 和4.已知向量,且,则( )A.-8B.-6C. 6D. 85.下图为一个四棱锥的三视图,其体积为( )A B C4 D8 (第5题图) (第6题图)6.如图,点是正方体的棱的中点,则异面直线与所成角的余弦值是( )A. B

2、. C. D. 7.圆的圆心到直线的距离为( )A. 1B. 2C. D. 8.已知两条平行直线和之间的距离等于2,则实数a的值为( )A-1 B4 C4或-16 D-169.已知圆截直线所得线段的长度是,则圆M与圆 的位置关系是( )A.内切B.相交C.外切D.相离10.在棱长为1的正方体中,是线段(含端点)上的一动点,则;面;三棱锥的体积不是定值;与所成的最大角为上述命题中正确的个数是( )A1 B2 C3 D411.设点,直线过点且与线段相交,则l的斜率k的取值范围是( )A. 或B. C. D.以上都不对12.已知点,直线将分割为面积相等的两部分,则的取值范围是( )A. B. C.

3、D. 二、填空题(每小题5分,共20分)13.已知空间两点,则、两点间的距离是 14.经过两条直线和的交点,且垂直于直线的直线方程为 15.已知顶点的坐标为,则其外接圆的标准方程为 16.如图,半径为的球中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是 三、解答题(第17题10分,其余每题12分,共70分)17.已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2)(1).求BC边所在的直线方程;(2).求BC边上的高所在直线方程18.已知两直线, (1).求直线与交点P的坐标;(2).设,求过点P且与距离相等的直线方程19.如图,在底面为平行四边形的四棱锥中,

4、过点的三条棱两两垂直且相等,分别是的中点(1).证明:平面;(2).求与平面所成角的大小 20.直线与坐标轴的交点是圆一条直径的两端点(1).求圆的方程;(2).圆的弦长度为且过点,求弦所在直线的方21.已知圆上的一定点,点为圆内一点,为圆上的动点.(1)求线段中点的轨迹方程;(2)若,求线段中点的轨迹方程.22.如图,在三棱锥中, ,为线段的中点,将折叠至,使得交于的中点1.求证:平面平面;2.求三棱锥的体积高二数学试卷答案一、选择题1.设集合,则( )A.B.C.D.解析:集合,.故选B.2.直线的斜率是( )ABCD2解析:直线可化为它的斜率是.选B3.圆的圆心坐标和半径分别为( )A.

5、 和 B. 和 C. 和 D. 和解析:可化为,由圆心为,半径,易知圆心的坐标为,半径为.答案:C4.已知向量,且,则( )A.-8B.-6C. 6D. 8解析:因为向量,所以,又,所以,解得,故选 D.5.下图为一个四棱锥的三视图,其体积为( ) A BC4 D8 解析:在棱长为2的正方体中还原该几何体,由几何体的三视图可知,该几何体为四棱锥,如图所示,正方形的面积所以故选:B6.如图,点是正方体的棱的中点,则异面直线与所成角的余弦值是( )A. B. C. D. .答案:A7.圆的圆心到直线的距离为( )A. 1B. 2C. D. 解析:由题意知圆心坐标为,则圆心到直线的距离为故选C.8.

6、已知两条平行直线和之间的距离等于2,则实数a的值为( ) A-1 B4 C4或-16 D-16解析:由已知可得:,解得答案:C9.已知圆截直线所得线段的长度是,则圆M与圆 的位置关系是()A.内切B.相交C.外切D.相离解析:由题知圆,圆心到直线的距离,所以2 ,解得.圆M,圆N的圆心距,两圆半径之差为1,故两圆相交.选B10.在棱长为1的正方体中,是线段(含端点)上的一动点,则;面;三棱锥的体积不是定值;与所成的最大角为上述命题中正确的个数是( )A1B2C3D4解析:利用平面,可得,正确;利用平面面,可得面,正确;三棱锥的体积=三棱锥的体积,底面为定值,E到平面的距离为定值,三棱锥的体积为

7、定值,正确;在处与所成的最大角为,正确。故选D.11.设点,直线过点且与线段相交,则l的斜率k的取值范围是( )A. 或B. C. D.以上都不对解析:建立如图所示的直角坐标系.由图可得或.因为,所以或.选A12.已知点,直线将分割为面积相等的两部分,则的取值范围是()A. B. C. D. 解析:由题意可得,三角形的面积为,由于直线与轴的交点为,由题意知可得点在射线上.设直线和的交点为,则由,可得点的坐标为,若点和点重合,则点为线段的中点,则,且,解得,若点在点和点之间,则点在点和点之间,由题意可得三角形的面积等于,即,即,解得,故若点在点的左侧,则,设直线和得交点为,则由求得点的坐标为,此

8、时, ,此时,点到直线的距离等于,由题意可得,三角形的面积等于,即,化简可得,由于此时,两边开方可得,则,综合以上可得的取值范围是,答案选C二、填空题13.已知空间两点,则、两点间的距离是_.答案:614.经过两条直线和的交点,且垂直于直线的直线方程为_. 15.已知顶点的坐标为,则其外接圆的标准方程为 _ .解析:设圆的方程为,把的顶点坐标代入可得.解得,故所求的的外接圆的方程为, 16.如图,半径为的球中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是_.解析:设圆柱的底面半径为,高为,则,所以,所以圆柱的侧面积.当.即时, 取得最大值.此时球的表面积与圆柱的侧面积之差

9、为.答案:三、解答题17.已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2)(1).求BC边所在的直线方程;(2).求BC边上的高所在直线方程解:(1)由两点式得的方程为,即(2)由得的高线方程的斜率,所以,即所求直线方程为18.已知两直线, (1).求直线与交点P的坐标;(2).设,求过点P且与距离相等的直线方程.解(1).由解得,点P的坐标为 (2).设过点且与距离相等的直线为l,则有以下两种情况:时,,不妨设直线l方程为:直线l过点P,,得 直线方程为: 即 (此题按点斜式解题亦可) 当l过线段中点时,不妨设线段中点为M,则由中点坐标公式得,所求的直线方程为:,即 综上所述

10、,所求直线方程为:或19.如图,在底面为平行四边形的四棱锥中,过点的三条棱两两垂直且相等,分别是的中点(1).证明:平面;(2).求与平面所成角的大小 解(1).证明:如图,连接,则是的中点又是的中点,不在平面内,平面。(2).连接,是正方形,又平面,。平面,故是与平面所成的角,与平面所成的角的大小等于,因此在中,与平面所成角的大小是20.直线与坐标轴的交点是圆一条直径的两端点(1)求圆的方程;(2)圆的弦长度为且过点,求弦所在直线的方程解析:(1).令,则即令则即圆心坐标为,直径所以圆的方程为(2)设直线方程为,即因为,所以圆心到直线的距离为即解得或所以直线方程为或.21.已知圆上的一定点,点为圆内一点,为圆上的动点.(1)求线段中点的轨迹方程;(2)若,求线段中点的轨迹方程.(1)设的中点为且,则点的坐标为.因为点在圆上,所以,整理,得.故线段中点的轨迹方程为,除去点.(2)设的中点为.在中,.连接,则,所以,所以,即.故线段中点的轨迹方程为.22.如图,在三棱锥中, ,为线段的中点,将折叠至,使得交于的中点.(1)求证:平面平面.(2)求三棱锥的体积.答案:(1)证明:在三棱锥中, ,所以平面,平面平面,是的中点,平面.又平面,平面平面.(2)由已知,

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3