ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:62.29KB ,
资源ID:848337      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-848337-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((同步优化设计)2021年高中数学 第二章 圆锥曲线 4.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

(同步优化设计)2021年高中数学 第二章 圆锥曲线 4.docx

1、第二章圆锥曲线4直线与圆锥曲线的位置关系4.2直线与圆锥曲线的综合问题课后篇巩固提升合格考达标练1.已知椭圆x236+y29=1以及椭圆内一点P(4,2),则以P为中点的弦所在直线的斜率为()A.-12B.12C.-2D.2答案A2.已知抛物线y2=2px(p0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为()A.x=1B.x=-1C.x=2D.x=-2答案B解析抛物线的焦点为Fp2,0,所以过焦点且斜率为1的直线方程为y=x-p2,即x=y+p2,代入y2=2px消去x,得y2=2py+p2,即y2-2py-p2=0,由根与系数的关系得

2、y1+y22=p=2(y1,y2分别为点A,B的纵坐标),所以抛物线的标准方程为y2=4x,准线方程为x=-1.3.若双曲线x2a2-y2b2=1(a0,b0)与直线y=3x无交点,则离心率e的取值范围是()A.(1,2)B.(1,2C.(1,5)D.(1,5答案B4.已知椭圆x216+y24=1,过右焦点F且斜率为k(k0)的直线与椭圆交于A,B两点,若AF=3FB,则k=()A.1B.2C.3D.2答案B5.已知过点M(1,1)作斜率为-12的直线与椭圆C:x2a2+y2b2=1(ab0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率为.答案22解析设A(x1,y1),B(x2,

3、y2),x12a2+y12b2=1,x22a2+y22b2=1,(x1-x2)(x1+x2)a2+(y1-y2)(y1+y2)b2=0,y1-y2x1-x2=-b2a2x1+x2y1+y2.y1-y2x1-x2=-12,x1+x2=2,y1+y2=2,-b2a2=-12.a2=2b2.又b2=a2-c2,a2=2(a2-c2),a2=2c2,e=ca=22.6.过双曲线x2a2-y2b2=1(a0,b0)的右顶点且斜率为2的直线,与该双曲线的右支交于两点,则此双曲线离心率的取值范围为.答案(1,5)解析由过双曲线x2a2-y2b2=1(a0,b0)的右顶点且斜率为2的直线,与该双曲线的右支交于

4、两点,可得ba2.e=ca=a2+b2a21,1e0)的直线与椭圆交于A,B两点,若AF=3FB,则k=()A.1B.2C.3D.2答案B解析c2=a2-b2=16-4=12,c=23.椭圆的右焦点F(23,0).设过右焦点F且斜率为k(k0)的直线为my=x-23,其中m=1k.设A(x1,y1),B(x2,y2),联立my=x-23,x216+y24=1,消去x得到(4+m2)y2+43my-4=0.y1+y2=-43m4+m2,y1y2=-44+m2.AF=3FB,-y1=3y2,把以上三式联立消去y1,y2,得m2=12,1k2=12,即k2=2.又k0,k=2.8.已知双曲线C:x2

5、a2-y2b2=1(a0,b0)的离心率为52,过右焦点F的直线与两条渐近线分别交于A,B两点,且AB=BF,则直线AB的斜率为()A.-13或13B.-16或16C.2D.16答案B9.已知抛物线y2=4x,过其焦点F的直线l与抛物线分别交于A,B两点(A在第一象限内),AF=3FB,过AB的中点且垂直于l的直线与x轴交于点G,则ABG的面积为()A.839B.1639C.3239D.6439答案C解析设A(x1,y1),B(x2,y2),因为AF=3FB,所以y1=-3y2,设直线l的方程为x=my+1,由y2=4x,x=my+1,消去x得y2-4my-4=0,y1y2=-4,y1=23,

6、y2=-233,y1+y2=4m=433,m=33,x1+x2=103,AB的中点坐标为53,233,过AB中点且垂直于直线l的直线方程为y-233=-33x-53,令y=0,可得x=113,SABG=12113-123+233=3239.10.(2020浙江高三二模)已知F1,F2是椭圆x2a2+y2b2=1(ab0)的左、右焦点,过右焦点F2的直线l与椭圆交于A,B两点,且满足AF2=2F2B,|F1B|=|AB|,则该椭圆的离心率是()A.12B.33C.32D.53答案B11.(多选题)已知B1,B2分别是椭圆x2a2+y2b2=1(ab0)的下顶点和上顶点,点P是椭圆上不同于短轴端点

7、的任意一点,点Q与点P关于y轴对称,则下列四个命题中正确的是()A.直线PB1与PB2的斜率之积为定值-a2b2B.PB1PB20C.PB1B2的外接圆半径的最大值为a2+b22aD.直线PB1与QB2的交点M的轨迹为双曲线答案BC解析设P(x0,y0),x02a2+y02b2=1,则kPB1kPB2=y0+bx0y0-bx0=y02-b2x02=-b2a2,因此A不正确;点P在圆x2+y2=b2外,x02+y02-b20,PB1PB2=(-x0,-b-y0)(-x0,b-y0)=x02+y02-b20,B正确;当点P在长轴的顶点上时,B1PB2最小且为锐角,设椭圆的右顶点为A,PB1B2的外

8、接圆半径为r,由正弦定理可得2r=2bsinB1PB22bsinB1AB2=2bsin2OAB2=2b2aba2+b2=a2+b2a.ra2+b22a,PB1B2的外接圆半径的最大值为a2+b22a,C正确;直线PB1的方程为y+b=y0+bx0x,直线QB2的方程为y-b=y0-b-x0x,两式相乘可得y2-b2=y02-b2-x02x2,化为y2b2-x2a2=1,由于点P不与B1,B2重合,M的轨迹为双曲线的一部分,D不正确.12.设双曲线x29-y216=1的右顶点为A,右焦点为F.过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则ABF的面积为.答案321513.在直角坐标系x

9、Oy中,已知点A(-2,2),B(2,2),直线AM,BM交于点M,且直线AM与直线BM的斜率满足:kAM-kBM=-2.(1)求点M的轨迹C的方程;(2)设直线l交曲线C于P,Q两点,若直线AP与直线AQ的斜率之积等于-2,证明:直线l过定点.(1)解设M(x,y),又A(-2,2),B(2,2),则kAM-kBM=y-2x+2-y-2x-2=8-4yx2-4=-2,可得x2=2y(x2),则M的轨迹C的方程为x2=2y(x2).(2)证明设Pm,m22,Qn,n22,m2,n2,又A(-2,2),可得kAPkAQ=m22-2m+2n22-2n+2=m-22n-22=-2,即有mn-2(m+

10、n)=-12,即mn=2(m+n)-12,直线l的斜率为kPQ=m22-n22m-n=m+n2,可得直线l的方程为y-m22=m+n2(x-m),化为y=m+n2x-mn2,可得y-6=m+n2(x-2),可得直线l恒过定点(2,6).新情境创新练14.已知椭圆C:x2a2+y2b2=1(ab0)的离心率为63,且经过点32,-32.(1)求椭圆C的方程;(2)过点P(0,2)的直线交椭圆C于A,B两点,求OAB(O为原点)面积的最大值.解(1)根据题意知:离心率e=63,可得ca=63,即c2a2=23,因为c2=a2-b2,所以a2-b2a2=23,整理得a2=3b2,又由椭圆C经过点32

11、,-32,代入可得(32)2a2+(-32)2b2=1,即34a2+34b2=1,联立a2=3b2,34a2+34b2=1,解得a2=3,b2=1,所以椭圆C的方程为x23+y2=1.(2)由题意,易知直线AB的斜率存在,设直线AB的方程为y=kx+2,联立y=kx+2,x23+y2=1,消去y得(1+3k2)x2+12kx+9=0,因为直线AB与椭圆C相交于A,B两点,所以=(12k)2-49(1+3k2)0,得k21,设A(x1,y1),B(x2,y2),则x1+x2=-12k1+3k2,x1x2=91+3k2,所以|AB|=1+k2(x1+x2)2-4x1x2=1+k2(-12k1+3k2)2-491+3k2=61+k2k2-11+3k2.点O(0,0)到直线kx-y+2=0的距离d=21+k2,所以OAB面积SAOB=12|AB|d=1261+k2k2-11+3k221+k2=6k2-11+3k2.令k2-1=t,则k2=t2+1(t0),所以SOAB=6t4+3t2=64t+3t624t3t=32,当且仅当4t=3t,即t2=43时,等号成立,此时k2=73,OAB的面积取得最大值32.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3