1、9 Sn与an的关系1 .数列的各项均为正数,为其前项和,对于任意,总有成等差数列.()求数列的通项公式;()设数列的前项和为 ,且,求证:对任意实数(是常数,2.71828)和任意正整数,总有 2;() 正数数列中,.求数列中的最大项. 分析:本题主要考查求数列的通项、等差等比数列的概念和性质、不等式、函数的单调性,综合运送知识分析问题和解决问题的能力。 转化(化归)的思想答案:()解:由已知:对于,总有 成立 (n 2) -得均为正数, (n 2) 数列是公差为1的等差数列 又n=1时, 解得=1.() ()证明:对任意实数和任意正整数n,总有. ()解:由已知 , 易得 猜想 n2 时,
2、是递减数列. 令当在内为单调递减函数.由.n2 时, 是递减数列.即是递减数列.又 , 数列中的最大项为. 2已知各项均为正数的数列的前项和满足,且.()求的通项公式;()设数列满足,并记为的前项和,求证:.分析:本小题主要考查数列、不等式、数学归纳法、二项式定理等基本知识,考查综合运用知识分析问题和解决问题的能力。转化(化归)思想,分类讨论的思想()解:由,解得或.由假设,因此.又由,得,即或.因,故不成立,舍去.因此,从而是公差为3,首项为2的等差数列,故的通项为.()证法一:由可解得从而.因此.令,则.因,故.特别地,从而,即.证法二:同证法一求得及.由二项式定理知,当时,不等式成立.由此不等式有.证法三:同证法一求得及.下面用数学归纳法证明:.当时,因此,结论成立.假设结论当时成立,即,则当时,.因,故.从而.这就是说当时结论也成立.综上对任何成立。