ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:88KB ,
资源ID:84574      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-84574-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2013届数学竞赛教案讲义(17)——整数问题.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2013届数学竞赛教案讲义(17)——整数问题.doc

1、第十七章 整数问题一、常用定义定理1整除:设a,bZ,a0,如果存在qZ使得b=aq,那么称b可被a整除,记作a|b,且称b是a的倍数,a是b的约数。b不能被a整除,记作a b.2 带余数除法:设a,b是两个给定的整数,a0,那么,一定存在唯一一对整数q与r,满足b=aq+r,0r|a|,当r=0时a|b。 w.w.w.k.s.5.u.c.o.m3辗转相除法:设u0,u1是给定的两个整数,u10,u1 u0,由2可得下面k+1个等式:u0=q0u1+u2,0u2|u1|;u1=q1u2+u3,0u3u2;u2=q2u3+u4,0u4u3;uk-2=qk-2u1+uk-1+uk,0ukuk-1;

2、uk-1=qk-1uk+1,0uk+11且n为整数,则,其中pj(j=1,2,k)是质数(或称素数),且在不计次序的意义下,表示是唯一的。6同余:设m0,若m|(a-b),即a-b=km,则称a与b模同m同余,记为ab(modm),也称b是a对模m的剩余。7完全剩余系:一组数y1,y2,ys满足:对任意整数a有且仅有一个yj是a对模m的剩余,即ayj(modm),则y1,y2,ys称为模m的完全剩余系。8Fermat小定理:若p为素数,pa,(a,p)=1,则ap-11(modp),且对任意整数a,有apa(modp).9若(a,m)=1,则1(modm),(m)称欧拉函数。10(欧拉函数值的

3、计算公式)若,则(m)=11(孙子定理)设m1,m2,mk是k个两两互质的正整数,则同余组:xb1(modm1),xb2(modm2),xbk(modmk)有唯一解,xM1b1+M2b2+Mkbk(modM),其中M=m1m2mk;=,i=1,2,k;1(modmi),i=1,2,k.二、方法与例题1奇偶分析法。例1 有n个整数,它们的和为0,乘积为n,(n1),求证:4|n。2不等分析法。例2 试求所有的正整数n,使方程x3+y3+z3=nx2y2z2有正整数解。3无穷递降法。例3 确定并证明方程a2+b2+c2=a2b2的所有整数解。4特殊模法。例4 证明:存在无穷多个正整数,它们不能表示

4、成少于10个奇数的平方和。5最小数原理。例5 证明:方程x4+y4=z2没有正整数解。6整除的应用。例6 求出所有的有序正整数数对(m,n),使得是整数。7进位制的作用例7 能否选择1983个不同的正整数都不大于105,且其中没有3个正整数是等差数列中的连续项?证明你的结论。三、习题精选1试求所有正整数对(a,b),使得(ab-a2+b+1)|(ab+1).2设a,b,cN+,且a2+b2-abc是不超过c+1的一个正整数,求证:a2+b2-abc是一个完全平方数。3确定所有的正整数数对(x,y),使得xy,且x2+1是y的倍数,y2+1是x的倍数。4求所有的正整数n,使得存在正整数m,(2n

5、-1)|(m2+9).5求证:存在一个具有如下性质的正整数的集合A,对于任何由无限多个素数组成的集合,存在k2及正整数mA和nA,使得m和n均为S中k个不同元素的乘积。6求最小的正整数n(4),满足从任意n个不同的整数中能选出四个不同的数a,b,c,d使20|(a+b-c-d).7.对于正整数a,n,定义Fn(a)=q+r,其中q,r为非负整数,a=qn+r且0rn,求最大正整数A,使得存在正整数n1,n2,n6,对任意正整数aA,都有=1,并证明你的结论。8设x是一个n位数,问:是否总存在非负整数y9和z使得10n+1z+10x+y是一个完全平方数?证明你的结论。9设a,b,c,dN+,且abcd,ac+bd=(b+d+a-c)(b+d-a+c)。证明:ab+cd不是素数。 w.w.w.k.s.5.u.c.o.m高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 )

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3