收藏 分享(赏)

2.1 两条直线的位置关系第2课时垂线教案.docx

上传人:高**** 文档编号:8446 上传时间:2024-05-23 格式:DOCX 页数:3 大小:913.21KB
下载 相关 举报
2.1 两条直线的位置关系第2课时垂线教案.docx_第1页
第1页 / 共3页
2.1 两条直线的位置关系第2课时垂线教案.docx_第2页
第2页 / 共3页
2.1 两条直线的位置关系第2课时垂线教案.docx_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第2课时垂线1理解并掌握垂线的概念及性质,了解点到直线的距离;2能够运用垂线的概念及性质进行运算并解决实际问题(重点,难点)一、情境导入如图是教室的一幅图片,黑板相邻两边的夹角等于多少度?这样的两条边所在的直线有什么位置关系?二、合作探究探究点一:垂线【类型一】 运用垂线的概念求角度 如图,直线BC与MN相交于点O,AOBC,BOENOE,若EON20,求AOM和NOC的度数解析:要求AOM的度数,可先求它的余角COM.由已知EON20,结合BOENOE,即可求得BON.再根据“对顶角相等”即可求得COM的度数;要求NOC的度数,根据邻补角的定义即可解:BOENOE,BON2EON22040,

2、NOC180BON18040140,MOCBON40.AOBC,AOC90,AOMAOCMOC904050,NOC140,AOM50.方法总结:(1)由两条直线互相垂直可以得出这两条直线相交所成的四个角中,每一个角都等于90;(2)在相交线中求角度,一般要利用垂直、对顶角相等、余角、补角等知识【类型二】 运用垂线的概念判定两直线垂直 如图所示,已知OAOC于点O,AOBCOD.试判断OB和OD的位置关系,并说明理由解析:由于OAOC,根据垂直的定义,可知AOC90,即AOBBOC90.又AOBCOD,则CODBOC90,即BOD90.再根据垂直的定义,得出OBOD.解:OBOD.理由如下:因为

3、OAOC,所以AOC90,即AOBBOC90.因为AOBCOD,所以CODBOC90,所以BOD90,所以OBOD.方法总结:由垂直这一条件可得两条直线相交构成的四个角为直角,反过来,由两条直线相交构成的角为直角,可得这两条直线互相垂直判断两条直线垂直最基本的方法就是说明这两条直线的夹角等于90.探究点二:垂线的性质(垂线段最短) 如图所示,修一条路将A,B两村庄与公路MN连起来,怎样修才能使所修的公路最短?画出线路图,并说明理由解析:连接AB,过点B作BCMN即可解:连接AB,作BCMN,C是垂足,线段AB和BC就是符合题意的线路图因为从A到B,线段AB最短,从B到MN,垂线段BC最短,所以

4、ABBC最短方法总结:与垂线段有关的作图,一般是过一点作已知直线的垂线,作图的依据是“垂线段最短”探究点三:点到直线的距离 如图,ACBC,AC3,BC4,AB5.(1)试说出点A到直线BC的距离;点B到直线AC的距离;(2)点C到直线AB的距离是多少?解析:(1)点A到直线BC的距离就是线段AC的长;点B到直线AC的距离就是线段BC的长;(2)过点C作CDAB,垂足为D.点C到直线AB的距离就是线段CD的长,可利用面积求得解:(1)点A到直线BC的距离是3;点B到直线AC的距离是4;(2)过点C作CDAB,垂足为D.SABCBCACABCD,所以5CD34,所以CD.所以点C到直线AB的距离为.方法总结:点到直线的距离是过这一点作已知直线的垂线,垂线段的长度才是这一点到直线的距离三、板书设计1垂线的概念:两条直线相交所成的四个角中,如果有一个角是直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足2垂线的作法3垂线的性质:平面内,过一点有且只有一条直线与已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短 本节课学习了垂线的概念和垂线的性质,垂直是相交的一种特殊情况,要说明两条相交线的位置关系,一般都是垂直垂线的两条性质中,不要遗漏条件“在同一平面内”,以保证定理的精确性对于垂线的概念和性质,要让学生理解记忆。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3