1、2012届高考数学压轴题1二次函数2复合函数3创新性函数4抽象函数5导函数(极值,单调区间)-不等式6函数在实际中的应用7函数与数列综合8数列的概念和性质9Sn与an的关系 10创新型数列11数列与不等式12数列与解析几何13椭圆14双曲线15抛物线16解析几何中的参数范围问题17解析几何中的最值问题18解析几何中的定值问题19解析几何与向量20探究性问题1.二次函数1. 对于函数,若存在实数,使成立,则称为 的不动点(1)当时,求的不动点;(2)若对于任何实数,函数恒有两个相异的不动点,求实数的取值范围;(3)在(2)的条件下,若的图象上两点的横坐标是函数的不动点,且直线是线段的垂直平分线,
2、求实数的取值范围分析 本题考查二次函数的性质、直线等基础知识,及综合分析问题的能力 函数与方程思想解: ,(1)当时,设为其不动点,即,则所以,即的不动点是.(2)由得.由已知,此方程有相异二实根,所以,即对任意恒成立,(3)设,直线是线段的垂直平分线,记的中点,由(2)知在上,化简得:,当时,等号成立即例2 已知函数,若对任意,且,都有 ()求实数的取值范围;()对于给定的实数,有一个最小的负数,使得 时,都成立,则当为何值时,最小,并求出的最小值解:() , ,实数的取值范围为 (),显然,对称轴。(1)当,即时,且令,解得,此时取较大的根,即, (2)当,即时,且令,解得,此时取较小的根,即, 当且仅当时,取等号,当时,取得最小值3