ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:75.50KB ,
资源ID:837919      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-837919-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017《走向高考》高考数学一轮总复习新课标通用习题:第10章 计数原理、概率、随机变量 第1讲(理) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2017《走向高考》高考数学一轮总复习新课标通用习题:第10章 计数原理、概率、随机变量 第1讲(理) WORD版含答案.doc

1、第十章第一讲A组基础巩固一、选择题1已知两条异面直线a、b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A40B16C13D10答案C解析分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面2从集合1,2,3,4,10中,选出5个数组成的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A32个B34个C36个D38个答案A解析先把数字分成5组:1,10,2,9,3,8,4,7,5,6,由于选出的5个数中,任意两个数的和都不等于11,所以从每组中任选一个数字即可,故共可组成222

2、2232个这样的子集3从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A56B54C53D52答案D解析在8个数中任取2个不同的数共有8756个对数值;但在这56个对数值中,log24log39,log42log93,log23log49,log32log94,即满足条件的对数值共有56452个4我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A18个B15个C12个D9个答案B解析依题意知,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个

3、数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共计363315个5在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先羸3局者获胜,直到决出胜负为止若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有()A6种B12种C18种D20种答案D解析分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C6种情形;恰好打5局(一个前4局中

4、赢2局,输2局,第5局赢),共有2C12种情形所有可能出现的情形共有261220种6(2015商洛一模)某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号买全,至少要花()A3 360元B6 720元C4 320元D8 640元答案D解析从01至10中选3个连续的号共有8种选法;从11至20中选2个连续的号共有9种选法;从21至30中选1个号有10种选法;从31至36中选一个号有6种选法,由分步乘法计数原理知共有891064 320(

5、种)选法,故至少需花4 32028 640(元)二、填空题7(2015河北保定调研)已知集合M1,2,3,4,集合A,B为集合M的非空子集,若对xA,yB,xy恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有_个.答案17解析A1时,B有231种情况;A2时,B有221种情况;A3时,B有1种情况;A1,2时,B有221种情况;A1,3,2,3,1,2,3时,B均有1种情况,故满足题意的“子集对”共有7313317个8如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有_种.答案180解析按区

6、域分四步:第一步,A区域有5种颜色可选;第二步,B区域有4种颜色可选;第三步,C区域有3种颜色可选;第四步,D区域也有3种颜色可选由分步乘法计数原理,可得共有5433180种不同的涂色方法9(2015湖南十二校联考)用红、黄、蓝三种颜色去涂图中标号为1,2,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有_种.答案108解析把区域分为三部分,第一部分1,5,9,有3种涂法第二部分4,7,8,当5,7同色时,4,8各有2种涂法,共4种涂法;当5,7异色时,7有2种涂法,4、8均只有1种涂法,故第二部分

7、共426种涂法第三部分与第二部分一样,共6种涂法由分步乘法计数原理,可得共有366108种涂法10在2014年南京青奥会百米决赛上,8名男运动员参加100米决赛其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有_种.答案2 880解析分两步安排这8名运动员第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排安排方式有43224种第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,所以安排方式有54321120种安排这8人的方式有241202 880种三、解答题11为参加2014年云南昭通地震救灾,某运输公司有7

8、个车队,每个车队的车辆均多于4辆现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有多少种不同的抽调方法?答案48解析在每个车队抽调1辆车的基础上,还需抽调3辆车可分成三类:一类是从某1个车队抽调3辆,有C种抽调方法;一类是从2个车队中抽调,其中1个车队抽调1辆,另1个车队抽调2辆,有A种抽调方法;一类是从3个车队中各抽调1辆,有C种抽调方法故共有CAC84种抽调方法12现有4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有多少种?答案48解析先给最上面的一块着色,有4种方法,再给中间左边一块着色,有3种方法,再给中间右边一块着色,有

9、2种方法,最后再给下面一块着色,有2种方法,根据分步乘法计数原理,共有432248种方法B组能力提升1已知集合M1,2,3,N1,2,3,4,定义函数f:MN.若点A(1,f(1)、B(2,f(2)、C(3,f(3),ABC的外接圆圆心为D,且(R),则满足条件的函数f(x)有()A6种B10种C12种D16种答案C解析由(R),说明ABC是等腰三角形,且BABC,必有f(1)f(3),f(1)f(2);当f(1)f(3)1,时,f(2)2、3、4,有三种情况f(1)f(3)2;f(2)1、3、4,有三种情况f(1)f(3)3;f(2)2、1、4,有三种情况f(1)f(3)4;f(2)2、3、

10、1,有三种情况因而满足条件的函数f(x)有12种2有10件不同的电子产品,其中有2件产品运行不稳定技术人员对它们进行一一测试,直到2件不稳定的产品全部找出后结束测试,则恰好3次就结束测试的情况有_种.答案32解析恰好3次就结束,即第3次测试到的产品运行不稳定:(1)若3次测试的产品运行分别为稳定、不稳定、不稳定,则有2816(种)情况;(2)若3次测试的产品运行分别不稳定、稳定、不稳定,则有2816(种)情况,故共有32种情况3若m、n均为非负整数,在做mn的加法时各位均不进位(例如:1343 8023 936),则称(m,n)为“简单的”有序对,而mn称为有序对(m,n)的值,那么值为1 9

11、42的“简单的”有序对的个数是_.答案300解析第1步,110,101,共2种组合方式;第2步,909,918,927,936,990,共10种组合方式;第3步:404,413,422,431,440,共5种组合方式;第4步:202,211,220,共3种组合方式根据分步乘法计数原理,值为1 942的“简单的”有序对的个数为21053300.4某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?答案20解析由题意得有1人既会英语又会日语,6人只会英语,2人只会日语第一类:从只会英语的6人中选1人说英语,共有6种方法,则说日

12、语的有213(种),此种共有6318(种);第二类:不从只会英语的6人中选1人说英语,则只有1种方法,则选会日语的有2种,此时共有122(种);所以根据分类加法计数原理知共有18220(种)选法5在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为多少?答案11解析方法一:分0个相同、1个相同、2个相同讨论(1)若0个相同,则信息为1001.共1个(2)若1个相同,则信息为0001,1101,1011,1000.共4个(3)若2个相同,又分为以下情况:若位置一与二相同,则信息为0101;位置一与二相同,则信息为0011;位置一与二相同,则信息为0000;位置一与二相同,则信息为1111;位置一与二相同,则信息为1100;位置一与二相同,则信息为1010.共6个故与信息0110至多有两个对应位置上的数字相同的信息个数为14611.方法二:若0个相同,共有1个;若1个相同,共有C4(个);若2个相同,共有C6(个)故共有14611(个)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3