ImageVerifierCode 换一换
格式:PPT , 页数:50 ,大小:3.22MB ,
资源ID:833861      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-833861-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021届高三数学文一轮总复习课件:第10章 第3节 几何概型 .ppt)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021届高三数学文一轮总复习课件:第10章 第3节 几何概型 .ppt

1、第十章 概 率第三节 几何概型栏目导航123课 堂 考 点 突 破课 时 跟 踪 检 测课 前 基 础 巩 固最新考纲考情分析核心素养1.了解随机数的意义,能运用随机模拟的方法估计概率.2.了解几何模型的意义.以理解几何概型的概念、概率公式为主,会求一些简单的几何概型的概率,常与平面几何、线性规划、不等式的解集、定积分等知识交汇考查在高考中多以选择题、填空题的形式考查,难度为中档.1.数学运算2.数学建模 3.直观想象 课 前 基 础 巩 固 1知识梳理1几何概型的定义如果每个事件发生的概率只与构成该事件区域的 1 _(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型2几何

2、概型的两个基本特点(1)无限性:在一次试验中,可能出现的结果有 2 _;(2)等可能性:每个结果的发生具有 3 _长度无限多个等可能性3几何概型的概率公式P(A)4 _构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)常用结论1几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的,前者概率的计算与基本事件的区域长度(面积或体积)的大小有关,而与形状和位置无关2在几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果基础自测一、疑误辨析1判断下列结论的正误(正确的打“”,错误的打“”)(1)随机模拟方法是以事件发生的频率估计概率()(2)从区

3、间1,10内任取一个数,取到 1 的概率是 110.()(3)概率为 0 的事件一定是不可能事件()(4)几何概型定义中的区域可以是线段、平面图形、立体图形()答案:(1)(2)(3)(4)二、走进教材2(必修 3P137 思考改编)在线段0,3上任投一点,则此点坐标小于 1 的概率为_解析:坐标小于 1 的区间为0,1),长度为 1,0,3的区间长度为 3,故所求概率为13.答案:133(必修 3P140T1 改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是_解析:P(A)38,P(B)28,P(C)2613,P

4、(D)13,P(A)P(C)P(D)P(B)答案:A4(必修 3P146B 组 T4 改编)设不等式组0 x2,0y2表示的平面区域为 D,在区域 D内随机取一个点,则此点到坐标原点的距离大于 2 的概率是_解析:如图所示,正方形 OABC 及其内部为不等式组表示的平面区域 D,区域 D 的面积为 4,而阴影部分表示的是区域 D 内到坐标原点的距离大于 2 的区域易知该阴影部分的面积为 4,因此满足条件的概率是44.答案:44三、易错自纠5一个路口的红绿灯,红灯的时间为 30 s,黄灯的时间为 5 s,绿灯的时间为 40 s,当某人到达路口时看见的是红灯的概率是_解析:设事件 A 表示“某人到

5、达路口时看见的是红灯”,则事件 A 对应 30 s 的时间长度,而路口红绿灯亮的一个周期为 3054075(s)的时间长度,所以根据几何概型的概率公式可得,事件 A 发生的概率 P(A)307525.答案:256在区间2,4上随机地取一个数 x,若 x 满足|x|m 的概率为56,则 m_解析:由|x|m,得mxm.当 0m2 时,由题意得2m6 56,解得 m2.5,矛盾,舍去 当 2m|AC|的概率为_解析:设事件 D 为“作射线 CM,使|AM|AC|”在 AB 上取点 C使|AC|AC|,因为ACC是等腰三角形,所以ACC18030275,事件 D 发生的区域 D907515,构成事件

6、总的区域 90,所以 P(D)D159016.答案:16课 堂 考 点 突 破2考点 与长度有关的几何概型|题组突破|1在区间0,上随机地取一个数 x,使 sin x12的概率为()A.13B.12C.23D.34解析:选 C 结合正弦曲线,知在0,上使 sin x12的 x6,56,由几何概型的概率公式,得 P56 60 23.2已知圆 O:x2y216,直线 l:yx,则圆 O 上任意一点 M 到直线 l 的距离大于 2 的概率是()A.34B.23C.12D.13解析:选 B 如图所示,设直线 l1,l2 与直线 yx 之间的距离为 d2,则弧 ACB和弧 EFG 上的点(不包括点 A,

7、B,E,G)满足题意,sinDBOODOB2412,DBO30,由角度型几何概型概率的计算公式可得圆 O 上任意一点 M 到直线 l 的距离大于2 的概率 P1202360 23.故选 B.3记函数 f(x)6xx2的定义域为 D.在区间4,5上随机取一个数 x,则 xD的概率是_解析:由 6xx20,得2x3,即 D2,3,P(xD)3(2)5(4)59.答案:594(2019 届辽宁省五校协作体联考)若 a1,6,则函数 yx2ax在区间2,)上单调递增的概率是_解析:因为函数 yx2axxax在区间(0,a)上单调递减,在区间(a,)上单调递增,而 1a6,所以 1 a 6.要使函数 y

8、x2ax在区间2,)上单调递增,则 a2,得 1a4,所以 P(1a4)416135.答案:355(2019 届湖北武汉模拟)某路公交车在 6:30,7:00,7:30 准时发车,小明同学在 6:50 至 7:30 之间到达该车站乘车,且到达该车站的时刻是随机的,则他等车时间不超过 10 分钟的概率为_解析:小明同学在 6:50 至 7:30 之间到达该车站乘车,总时长为 40 分钟,公交车在 6:30,7:00,7:30 准时发车,他等车时间不超过 10 分钟,则必须在 6:50 至 7:00 或 7:20 至 7:30 之间到达,时长为 20 分钟,则他等车时间不超过 10 分钟的概率 P

9、204012.答案:12名师点津 与长度有关的几何概型的求法(1)如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为P(A)构成事件A的区域长度试验的全部结果所构成的区域长度.(2)与时间、不等式等有关的概率问题可转化为几何概型,利用几何概型概率公式进行求解考点一 与面积有关的几何概型 命题角度一 与平面图形面积有关的几何概型【例 1】(一题多解)如图来自古希腊数学家希波克拉底所研究的几何图形此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的斜边 BC,直角边 AB,AC.ABC 的三边所围成的区域记为,黑色部分记为,其余部分记为.在整个图形中随机取一点,此点取自

10、,的概率分别记为 p1,p2,p3,则()Ap1p2Bp1p3Cp2p3Dp1p2p3解析 解法一:设直角三角形 ABC 的内角 A,B,C 所对的边分别为 a,b,c,则区域的面积即ABC 的面积为 S112bc,区域的面积 S212c2212b22a22212bc 18(c2b2a2)12bc12bc,所以 S1S2,由几何概型的知识知 p1p2,故选 A.解法二:不妨设ABC 为等腰直角三角形,ABAC2,则 BC2 2,所以区域的面积即ABC 的面积为 S112222,区域的面积 S212(2)222 2,区域的面积 S3(2)2222.根据几何概型的概率计算公式,得 p1p2 22,

11、p322,所以 p1p3,p2p3,p1p2p3,故选 A.答案 A命题角度二 与随机模拟有关的几何概型【例 2】从区间0,1上随机抽取 2n 个数 x1,x2,xn,y1,y2,yn,构成 n个数对(x1,y1),(x2,y2),(xn,yn),其中两数的平方和小于 1 的数对共有 m 个,则用随机模拟的方法得到的圆周率 的近似值为()A.4nmB.2nmC.4mnD.2mn解析 如图,数对(xi,yi)(i1,2,n)表示的点落在边长为 1 的正方形 OABC内(包括边界),两数的平方和小于 1 的数对表示的点落在半径为 1 的四分之一圆(阴影部分)内由几何概型的概率公式可得mn1412,

12、故 4mn.故选 C.答案 C名师点津 与面积有关的几何概型的求法求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解|跟踪训练|1.如图所示,黑色部分和白色部分图形是由曲线 y1x,y1x,yx,yx 及圆构成的在圆内随机取一点,则此点取自黑色部分的概率是()A.14B.18C.4D.8解析:选 A 根据图象的对称性知,黑色部分的面积为圆面积的14.在圆内随机取一点,则此点取自黑色部分的概率是14,故选 A.2(2019 届重庆六校联考)九章算术中有如下问题:“今有勾八步,股一十五步,问勾中容圆径几

13、何”其大意:“已知直角三角形两直角边长分别为 8 步和 15 步,问其内切圆的直径为多少步”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A.310B.320C1310D1320解析:选 D 如图,直角三角形的斜边长为 8215217,设其内切圆的半径为 r,则 8r15r17,解得 r3,所以内切圆的面积为 Sr29,所以豆子落在内切圆外的概率 P19128151320.3中国人民银行发行了一套 2018 中国戊戌(狗)年金银纪念币,如图所示是一枚 3克圆形金质纪念币,直径为 18 mm,小米同学为了测算图中装饰狗的面积,他用 1 枚针向纪念币上投掷 500 次,其中针尖恰

14、有 150 次落在装饰狗的身体上,据此可估计装饰狗的面积大约是()A.4865mm2B.24310mm2C.2435mm2D.24320mm2解析:选 B 设装饰狗的面积为 S mm2.由题意得S1822150500,S24310mm2,故选 B.考点二 与体积有关的几何概型【例 3】一个多面体的直观图和三视图如图所示,点 M 是 AB 的中点,一只蝴蝶在几何体 ADFBCE 内自由飞翔,则它飞入几何体 FAMCD 内的概率为()A.34B.23C.13D.12解析 因为 VFAMCD13S 四边形 AMCDDF14a3,VADFBCE12a3,所以它飞入几何体FAMCD 内的概率为 P14a

15、312a312.答案 D名师点津 与体积有关的几何概型的求法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题也可利用其对立事件求解|跟踪训练|4已知正三棱锥 SABC 的底面边长为 4,高为 3,在正棱锥内任取一点 P,使得VPABC12VSABC 的概率为()A.34B.78C.12D.14解析:选 B 由题意知,当点 P 在三棱锥的中截面以下时,满足 VPABC12VSABC,故使得 VPABC12VSABC 的概率 P大三棱锥的体积小三棱锥的体积大三棱锥的体积 112378.考点“全面型”问题【例】甲、乙两人约定晚 6 点到晚

16、 7 点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若乙早到则不需等待即可离去,则甲、乙两人能见面的概率为()A.38B.34C.35D.45解析 由题意知本题是一个几何概型,设甲到的时间为 x,乙到的时间为 y,则试验包含的所有事件是(x,y)|0 x1,0y1,事件对应的集合表示的面积是 S1,满足条件的事件是 A(x,y)0 x1,0y1,yx12且yx,则 B0,12,D12,1,C(0,1),则事件 A 对应的集合表示的面积是 11212121211 38,根据几何概型概率公式得到 P38138,所以甲、乙两人能见面的概率为38.故选 A.答案 A名师点津 此类问题属于双变量问题,其中一个变量设为 x,另一个变量设为 y,构成有序实数对(x,y),从而转化为面积问题|跟踪训练|某日,甲、乙两人随机选择早上 6:00 至 7:00 的某个时刻到达七星公园进行锻炼,则甲比乙提前到达超过 20 分钟的概率为()A.79B.29C.23D.13解析:选 B 在平面直角坐标系中,设 x,y 分别表示乙、甲两人的到达时刻,当 xy20 时满足题意,由几何概型计算公式可得,甲比乙提前到达超过 20 分钟的概率为 P1240406060 29.故选 B.点此进入该word板块课 时 跟 踪 检 测3谢 谢 观 看 THANKS

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3