1、专题2.4 解一元二次方程-一因式分解法(专项训练)1.用因式分解法解方程:(x1)(x+2)2(x+2)2.用因式分解法解方程:2(x3)3x(x3)3.用因式分解法解方程(x3)23x94.用因式分解法解方程:x2+4x+305.用因式分解法解方程:x(x4)123x(用因式分解法);6.用因式分解法解方程:x(x1)2(x1)(因式分解法);7.用因式分解法解方程:x27x+100(因式分解法);8用因式分解法解方程(1)x(2x5)2(2x5) (2)4x24x+1(x+3)29用因式分解法解方程:(1)3x(2x+1)2(2x+1); (2)(x3)2(52x)210.用因式分解法解
2、方程:(1) x211x120 (2)(x+2)210(x+2)+250专题2.4 解一元二次方程-一因式分解法(专项训练)1.用因式分解法解方程:(x1)(x+2)2(x+2)【答案】x12;x23【解答】解:(x1)(x+2)2(x+2)0,(x+2)(x12)0,x+20或x120,所以x12;x232.用因式分解法解方程:2(x3)3x(x3)【答案】x13,x2【解答】解:2(x3)3x(x3)0,x3)(23x)0,x30或23x0,所以x13,x23.用因式分解法解方程(x3)23x9【答案】x13,x26【解答】解:(x3)23x9,(x3)23(x3)0,则(x3)(x6)0
3、,x30或x60,解得x13,x264.用因式分解法解方程:x2+4x+30【答案】x11,x23【解答】解:x2+4x+30,(x+1)(x+3)0,x+10或x+30,解得x11,x235.用因式分解法解方程:x(x4)123x(用因式分解法);【答案】x14,x23;【解答】解:x(x4)123x,x(x4)+3(x4)0,则(x4)(x+3)0,x40或x+30,解得x14,x23;6.用因式分解法解方程:x(x1)2(x1)(因式分解法);【答案】x11,x22;【解答】解:(1)x(x1)2(x1),移项,得x(x1)2(x1)0,(x1)(x2)0,x10或x20,解得:x11,
4、x22;7.用因式分解法解方程:x27x+100(因式分解法);【答案】x12,x25【解答】解:(1)x27x+100,(x2)(x5)0,则x20或x50,解得x12,x25;8用因式分解法解方程(1)x(2x5)2(2x5)(2)4x24x+1(x+3)2【答案】(1) x12.5,x22;(2)x14,x2【解答】解:(1)x(2x5)2(2x5),x(2x5)2(2x5)0,则(2x5)(x2)0,2x50或x20,解得x12.5,x22;(2)4x24x+1(x+3)2,(2x1)2(x+3)20,(2x1+x+3)(2x1x3)0,即(3x+2)(x4)0,3x+20或x40,解
5、得x14,x29用因式分解法解方程:(1)3x(2x+1)2(2x+1);(2)(x3)2(52x)2【答案】(1) x1,x2;(2)x1,x22【解答】解:(1)3x(2x+1)2(2x+1)0,(2x+1)(3x2)0,则2x+10或3x20,解得x1,x2;(2)(x3)2(52x)2,x352x或x32x5,解得x1,x2210.用因式分解法解方程:(2) x211x120 (2)(x+2)210(x+2)+250(【答案】(1)x112,x21; (2)x1x23;【解答】(1)x211x120解:(x12)(x+1)0x120或x+10,x112,x21;(2)(x+2)210(x+2)+250解:(x+2)520,(x3)20,x30,x1x23;