ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:401.17KB ,
资源ID:833040      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-833040-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题19 用一次函数、反比例函数、二次函数解决实际问题(重点突围)(原卷版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

专题19 用一次函数、反比例函数、二次函数解决实际问题(重点突围)(原卷版).docx

1、专题19 用一次函数、反比例函数、二次函数解决实际问题【中考考向导航】目录【直击中考】1【考向一 在一次函数解决实际问题求最值问题】1【考向二 用反比例函数解决实际问题】7【考向三 在二次函数解决实际问题求最值问题】13【直击中考】【考向一 在一次函数解决实际问题求最值问题】例题:(2023山东济南山东大学附属中学校考一模)为响应对口扶贫,深圳某单位和西部某乡结对帮扶,采购该乡农副产品助力乡村振兴已知1件A产品价格比1件B产品价格少20元,300元购买A产品件数与400元购买B产品件数相同(1)A产品和B产品每件分别是多少元?(2)深圳该对口单位动员职工采购该乡A、B两种农副产品,根据统计:职

2、工响应积极,两种预计共购买150件,A的数量不少于B的2倍,当采购A、B两种农副产品为多少时,购买总费用最大?并求购买总费用的最大值【变式训练】1(2023秋广东河源八年级校考期末)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710且不超过6810元购进这两种商品共100件(1)甲、乙两种商品的进价各是多少?(2)设其中甲商品的进货件数为件,商店有几种进货方案?(3)设销售两种商品的总利润为元,试写出利润与的函数关系式,并利用函数的性质说明哪一种进货方案可获得最大利润,并求出

3、最大利润是多少?2(2023秋山西阳泉九年级统考期末)为了打造“清洁能源示范城市”,某市2020年投入资金2250万元用于充电桩的安装,并规划投入资金逐年增加,2022年在2020年的基础上增加投入资金2160万元(1)从2020年到2022年,该市用于充电桩安装的资金年平均增长率为多少?(2)2023年该市计划再安装A、B两种型号的充电桩共100个已知安装一个A型充电桩需3.2万元,安装一个B型充电桩需3.8万元,且A型充电桩的数量不多于B型充电桩的一半求A、B两种型号充电桩各安装多少个时,所需资金最少,最少为多少?3(2021秋河南信阳八年级校考期末)为了丰富同学们的课余生活,经市场了解,

4、发现篮球的单价比足球的单价多元,用元购买的篮球的个数等于用元购买的足球的个数(1)求篮球和足球的单价(2)为了支持学校开展体育活动,某校准备购买足球、篮球共个,且保证购买篮球数量不少于足球的一半,商店对篮球及足球进行打折销售,其中篮球打八折,足球打九折,请你给该校设计一个最省钱的购买方案,并求出最少费用为多少元?4(2023春全国八年级专题练习)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣已知购买甲型机器人1台,乙型机器人2台,共需7万元;购买甲型机器人2台,乙型机器人3台,共需12万元(1)甲,乙两种型号机器人的单价各为多少万元?(2)已知1台甲型和1台乙型机器人每小时分拣快递

5、的数量分别是1400件和1200件,该公司计划最多用16万元购买6台这两种型号的机器人,且至少购买甲型机器人2台,如何购买才能使每小时的分拣量最大?5(2023秋陕西西安九年级校考期末)某经销商计划购进400斤普通包装和精品包装的柿饼进行售卖,这两种包装柿饼的进价和售价如下表:品名进价(元/斤)售价(元/斤)普通包装1115精品包装1528设该经销商购进普通包装的柿饼x斤,总利润为y元(1)求y与x之间的函数关系式;(2)经过市场调研,该经销商决定购进精品包装的柿饼不大于普通包装的3倍,请问获利最大的进货方案及最大利润【考向二 用反比例函数解决实际问题】例题:(2023秋湖南永州九年级校考期末

6、)某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度与时间之间的函数关系,其中线段、表示恒温系统开启阶段,双曲线的一部分表示恒温系统关闭阶段请根据图中信息解答下列问题:(1)求这天的温度y与时间的函数关系式;(2)若大棚内的温度低于时,蔬菜会受到伤害问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【变式训练】1(2023云南校考一模)云南某山区冬季经常缺水,政府在山顶修建了一大型蓄水池据统计,按每天用水立方米计算,蓄水池剩余的水一个月(30天)刚好用完如果每天的用水量为x立方米,那么这个蓄水池的水能维持y天(

7、1)写出y与x之间的函数表达式;(2)如果每天用水立方米,那么蓄水池剩余的水能维持多少天?2(2023安徽宿州统考一模)为检测某品牌一次性注射器的质量,将注射器里充满一定量的气体,当温度不变时,注射器里的气体的压强与气体体积满足反比例函数关系,其图像如图所示(1)求反比例函数的表达式(2)当气体体积为60ml时,气体的压强为_kPa(3)若注射器内气体的压强不能超过500kPa,则其体积V要控制在什么范围?3(2023秋河北邯郸九年级校考期末)某校为进一步预防“新型冠状病毒”,对全校所有的教室都进行了“熏药法消毒”处理,已知该药物在燃烧释放过程中,教室内空气中每立方米的含药量(mg)与燃烧时间

8、(min)之间的函数关系如图所示,其中当时,是的正比例函数,当时,是的反比例函数,根据图象提供的信息,解答下列问题:(1)求与的函数关系式;(2)求点的坐标;(3)药物燃烧释放过程中,若空气中每立方米的含药量不小于4mg的时间超过20分钟,即为有效消毒,请问本题中的消毒是否为有效消毒?4(2023秋河北保定九年级统考期末)一辆汽车行驶在从甲地到乙地的高速公路上,行驶全程所需的时间(h)与行驶的平均速度()之间的反比例函数关系如图所示(1)请写出这个反比例函数的解析式(2)甲乙两地间的距离是_(3)根据高速公路管理规定,车速最高不能超过,若汽车行驶全程不进入服务区休息,且要求在以内从甲地到达乙地

9、,求汽车行驶速度应控制在什么范围之内5(2023秋河南开封九年级统考期末)如图,小明设计了一个探究杠杆平衡条件的实验:取一根长为100米的匀质木杆,用细绳绑在木杆的中点O并将其吊起来在中点O的左侧距离中点O为30处挂一个重10N的物体,在中点O的右侧用一个弹簧秤向下拉,使木杆处于水平状态改变弹簧秤与中点O的距离L(单位:),观察弹簧秤的示数F(单位:N)的变化情况得出如下几组实验数据:L/1015202530F/N302015a10(1)观察上表实验数据,写出表中a的值_(2)以L的数值为横坐标,F的数值为纵坐标建立如图平面直角坐标系,在坐标系中描出以上表中的数对为坐标的各点,并用平滑的曲线顺

10、次连接这些点;(3)根据所画的图象,求出F与L的函数关系式【考向三 在二次函数解决实际问题求最值问题】例题:(2022秋山东烟台九年级统考期末)某文具店以8元/支的进价购进一批签字笔进行销售,经市场调查后发现,日销量(支)与零售价(元)之间的关系图象如下图所示,其中(1)求出日销量(支)与零售价(元)之间的关系;(2)当零售价定为多少时,该文具店每天销售这种签字笔获得的利润最大?最大利润是多少?【变式训练】1(2022秋山西太原九年级校考期末)某文具商店销售进价为元/盒的彩色铅笔,市场调查发现,若以每盒元的价格销售,平均每天销售盒,价格每提高1元,平均每天少销售2盒,设每盒彩色铅笔的销售价为x

11、()元,平均每天销售y盒,平均每天的销售利润为 W 元(1)直接写出y与x之间的函数关系式:_(2)求W与x之间的函数关系式(3)为稳定市场,物价部门规定每盒彩色铅笔的售价不得高于元,当每盒的销售价为多少元时,平均每天获得的利润最大?最大利润是多少元?2(2022秋山东济宁九年级统考期末)某超市经销种商品,每千克成本为40元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)45505560销售量y(千克)1101009080(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天

12、获得1600元的销售利润,则该天的销售单价x应定为多少?(3)当销售单价x定为多少时,才能使当天的销售利润最大?最大利润是多少?3(2023秋湖南长沙九年级校考期末)大学生小李和同学一起自主创业开办了一家公司,公司对经营的盈亏情况在每月的最后一天结算一次,在112月份中,该公司前个月累计获得的总利闻(万元)与销售时间(月)之间满足二次函数关系(1)求与函数关系式;(2)求9月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司所获得利润最大?最大利润为多少?4(2023春福建泉州九年级校考阶段练习)某商家计划从厂家采购,两种产品共件,产品的采购单价(元/件)是采购数量(件)的一次函数,下

13、表提供了部分采购数据.采购数量(件)产品单价(元/件)产品单价(元/件)(1)求产品的采购数量与采购单价的函数关系式;(2)该商家分别以元件和元件的销售单价出售,两种产品,且全部售完,在产品的采购数量不小于且不大于的条件下,求采购种产品多少件时总利润最大,并求最大利润.5(2023秋黑龙江佳木斯九年级校联考期末)同江新天地亮亮儿童村服装柜在销售中发现:“快乐小鱼”牌童装平均每天可售出20件,每件盈利40元春节将至,为了尽快减少库存,商场决定采取适当的降价措施,增加盈利经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件(1)要想平均每天销售这种童装盈利1200元,那么每件童装应降价

14、多少元?(2)降价多少元时商场可获得最大利润?最大利润为多少元?6(2022春广东佛山九年级校考阶段练习)某工厂制作A,B两种手工艺品,B每天每件获利比A多105元,A获利30元与B获利240元时的数量相等(1)制作一件A和一件B分别获利多少元?(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B在(1)的条件下,每天制作B不少于5件当每天制作5件B时,每件获利不变,若每增加1件,则当天平均每件获利减少2元求每天制作二种手工艺品的人数及可获得的总利润W(元)的最大值7(2023秋江苏泰州九年级校考期末)某书店销售一本畅销的小说,每本进价为25元根据以往经验,当销售单价是30元时,每天的销售量是300本;销售单价每上涨1元,每天的销售量减少10本,设这本小说每天的销售量为y本,销售单价为x元(1)请求出y与x之间的函数关系式;(2)书店决定每销售1本该小说,就捐赠3元给山区贫困儿童,若想每天扣除捐赠后获得最大利润,则该小说每本售价为多少元?每天最大利润是多少元?

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1