ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:371.05KB ,
资源ID:831386      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-831386-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题11 二次函数与矩形、菱形的存在性问题(知识解读)(原卷版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

专题11 二次函数与矩形、菱形的存在性问题(知识解读)(原卷版).docx

1、专题11 二次函数与矩形、菱形的存在性问题(知识解读)【专题说明】二次函数为载体的矩形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高【解题思路】 考点1 矩形存在性问题1.矩形的判定:(1)有一个角是直角的平行四边形;(2)对角线相等的平行四边形;(3)有三个角为直角的四边形2.题型分析矩形除了具有平行四边形的性质之外,还有“对角线相等”或“内角为直角”,因此相比起平行四边形,坐标系中的矩形满足以下3个等式:(AC为对角线时)因此在矩形存在性问题最多可以有3个未知量,代入可以得到三元一次方程组,可解确定了有3个未知量,则可判断常见矩形存

2、在性问题至少有2个动点,多则可以有3个下:(1)2个定点+1个半动点+1个全动点;(2)1个定点+3个半动点思路1:先直角,再矩形在构成矩形的4个点中任取3个点,必构成直角三角形,以此为出发点,可先确定其中3个点构造直角三角形,再确定第4个点对“2定+1半动+1全动”尤其适用【例题】已知A(1,1)、B(4,2),点C在x轴上,点D在平面中,且以A、B、C、D为顶点的四边形是矩形,求D点坐标解:点 C 满足以 A、B、C 为顶点的三角形是直角三角形,构造“两线一圆”可得满足条件的 点 C 有在点 C 的基础上,借助点的平移思路,可迅速得到点 D 的坐标 思路2:先平行,再矩形当AC为对角线时,

3、A、B、C、D满足以下3个等式,则为矩形:其中第1、2个式子是平行四边形的要求,再加上式3可为矩形表示出点坐标后,代入点坐标解方程即可无论是“2定1半1全”还是“1定3半”,对于我们列方程来解都没什么区别,能得到的都是三元一次方程组考点2 菱形存在性问题1 菱形的判定:有一组邻边相等的平行四边形是菱形 2坐标系中的菱形: 有 3 个等式,故菱形存在性问题点坐标最多可以有 3 个未知量,与矩形相同 3解题思路: (1)思路 1:先等腰,再菱形 在构成菱形的 4 个点中任取 3 个点,必构成等腰三角形,根据等腰存在性方法可先确 定第 3 个点,再确定第 4 个点 (2)思路 2:先平行,再菱形 设

4、点坐标,根据平行四边形的存在性要求列出“”(AC、BD 为对角线),再结合一组邻 边相等,得到方程组方法总结: 菱形有一个非常明显的特点:任意三个顶点所构成的三角形必然是等腰三角形。【典例分析】【考点1 矩形的存在性问题】【典例1】(2022鱼峰区模拟)如图,在平面直角坐标系中,抛物线yx2+bx+c与坐标轴交于A(0,2),B(4,0)两点,直线BC:y2x+8交y轴于点C(1)求该抛物线的解析式;(2)在第二象限内是否存在一点M,使得四边形ABCM为矩形?如果存在,求出点M的坐标;如果不存在,请说明理由【变式1-1】(2022随州)如图1,平面直角坐标系xOy中,抛物线yax2+bx+c(

5、a0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x1,且OAOC,P为抛物线上一动点(1)直接写出抛物线的解析式;(2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;(3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由【变式1-2】(辽阳)如图,直线yx3与坐标轴交于A、B两点,抛物线yx2+bx+c经过点B,与直线yx3交于点E(8,5),且与x轴交于C,D两点(1)求抛物线的解析式;(2)点P在抛物线上,在坐标平面内

6、是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由【考点2 菱形的存在性问题】【典例2】如图,抛物线yax2+bx+3交x轴于A(3,0),B(1,0)两点,交y轴于点C,动点P在抛物线的对称轴上(1)求抛物线的解析式;(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及PBC的周长;(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由【变式2-1】如图,在直角坐标系中,二次函数yx2+bx+c的图象与x轴相交于点A(1

7、,0)和点B(3,0),与y轴交于点C(1)求b、c的值;(2)点P(m,n)为抛物线上的动点,过P作x轴的垂线交直线l:yx于点Q当0m3时,求当P点到直线l:yx的距离最大时m的值;是否存在m,使得以点O、C、P、Q为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值【变式2-2】综合与探究如图,抛物线yx2+2x6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC(1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式(2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线l,交线段AC于点D试探究:在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;设抛物线的对称轴与直线l交于点M,与直线AC交于点N当SDMNSAOC时,请直接写出DM的长【变式2-3】如图,二次函数yx2+bx+c的图象交x轴于点A(3,0),B(1,0),交y轴于点 C点P(m,0)是x轴上的一动点,PMx轴,交直线AC于点M,交抛物线于点N(1)求这个二次函数的表达式;(2)若点P仅在线段AO上运动,如图,求线段MN的最大值;若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1