ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:620.05KB ,
资源ID:829531      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-829531-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题06 立体几何(解答题)(理科专用)(学生版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

专题06 立体几何(解答题)(理科专用)(学生版).docx

1、专题06 立体几何(解答题)(理科专用)1【2022年全国甲卷】在四棱锥P-ABCD中,PD底面ABCD,CDAB,AD=DC=CB=1,AB=2,DP=3(1)证明:BDPA;(2)求PD与平面PAB所成的角的正弦值2【2022年全国乙卷】如图,四面体ABCD中,ADCD,AD=CD,ADB=BDC,E为AC的中点(1)证明:平面BED平面ACD;(2)设AB=BD=2,ACB=60,点F在BD上,当AFC的面积最小时,求CF与平面ABD所成的角的正弦值3【2022年新高考1卷】如图,直三棱柱ABC-A1B1C1的体积为4,A1BC的面积为22(1)求A到平面A1BC的距离;(2)设D为A1

2、C的中点,AA1=AB,平面A1BC平面ABB1A1,求二面角A-BD-C的正弦值4【2022年新高考2卷】如图,PO是三棱锥P-ABC的高,PA=PB,ABAC,E是PB的中点(1)证明:OE/平面PAC;(2)若ABO=CBO=30,PO=3,PA=5,求二面角C-AE-B的正弦值5【2021年甲卷理科】已知直三棱柱中,侧面为正方形,E,F分别为和的中点,D为棱上的点 (1)证明:;(2)当为何值时,面与面所成的二面角的正弦值最小?6【2021年乙卷理科】如图,四棱锥的底面是矩形,底面,为的中点,且(1)求;(2)求二面角的正弦值7【2021年新高考1卷】如图,在三棱锥中,平面平面,为的中

3、点.(1)证明:;(2)若是边长为1的等边三角形,点在棱上,且二面角的大小为,求三棱锥的体积.8【2021年新高考2卷】在四棱锥中,底面是正方形,若(1)证明:平面平面;(2)求二面角的平面角的余弦值9【2020年新课标1卷理科】如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,是底面的内接正三角形,为上一点,(1)证明:平面;(2)求二面角的余弦值10【2020年新课标2卷理科】如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1MN,且平面A1AMNEB

4、1C1F;(2)设O为A1B1C1的中心,若AO平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.11【2020年新课标3卷理科】如图,在长方体中,点分别在棱上,且,(1)证明:点在平面内;(2)若,求二面角的正弦值12【2020年新高考1卷(山东卷)】如图,四棱锥P-ABCD的底面为正方形,PD底面ABCD设平面PAD与平面PBC的交线为l(1)证明:l平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值13【2020年新高考2卷(海南卷)】如图,四棱锥P-ABCD的底面为正方形,PD底面ABCD设平面PAD与平面PBC的交线

5、为(1)证明:平面PDC;(2)已知PD=AD=1,Q为上的点,QB=,求PB与平面QCD所成角的正弦值14【2019年新课标1卷理科】如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN平面C1DE;(2)求二面角A-MA1-N的正弦值15【2019年新课标2卷理科】如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1.(1)证明:BE平面EB1C1;(2)若AE=A1E,求二面角BECC1的正弦值.16【2019年新课标3卷理科】图1是由矩形ADEB,RtABC

6、和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,FBC=60,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC平面BCGE;(2)求图2中的二面角BCGA的大小.17【2018年新课标1卷理科】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.18【2018年新课标2卷理科】如图,在三棱锥中,为的中点(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值 19【2018年新课标3卷理科】如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1