ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:674.07KB ,
资源ID:829527      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-829527-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题06 立体几何(解答题)(文科专用)(学生版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

专题06 立体几何(解答题)(文科专用)(学生版).docx

1、专题06 立体几何(解答题)(文科专用)1【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,EAB,FBC,GCD,HDA均为正三角形,且它们所在的平面都与平面ABCD垂直(1)证明:EF/平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度)2【2022年全国乙卷】如图,四面体ABCD中,ADCD,AD=CD,ADB=BDC,E为AC的中点(1)证明:平面BED平面ACD;(2)设AB=BD=2,ACB=60,点F在BD上,当AFC的面积最小时,求三棱锥F-ABC的体积3【2021年甲卷文科】已知直三棱

2、柱中,侧面为正方形,E,F分别为和的中点,.(1)求三棱锥的体积;(2)已知D为棱上的点,证明:.4【2021年乙卷文科】如图,四棱锥的底面是矩形,底面,M为的中点,且(1)证明:平面平面;(2)若,求四棱锥的体积5【2020年新课标1卷文科】如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,APC=90(1)证明:平面PAB平面PAC;(2)设DO=,圆锥的侧面积为,求三棱锥PABC的体积.6【2020年新课标2卷文科】如图,已知三棱柱ABCA1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点过B1C1和P的平面交AB于E

3、,交AC于F(1)证明:AA1/MN,且平面A1AMN平面EB1C1F;(2)设O为A1B1C1的中心,若AO=AB=6,AO/平面EB1C1F,且MPN=,求四棱锥BEB1C1F的体积7【2020年新课标3卷文科】如图,在长方体中,点,分别在棱,上,且,证明:(1)当时,;(2)点在平面内8【2019年新课标1卷文科】如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN平面C1DE;(2)求点C到平面C1DE的距离9【2019年新课标2卷文科】如图,长方体ABCDA1B1C1D1的底面ABCD是正

4、方形,点E在棱AA1上,BEEC1.(1)证明:BE平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥的体积10【2019年新课标3卷文科】图1是由矩形和菱形组成的一个平面图形,其中, ,将其沿折起使得与重合,连结,如图2.(1)证明图2中的四点共面,且平面平面;(2)求图2中的四边形的面积.11【2018年新课标1卷文科】如图,在平行四边形中,以为折痕将折起,使点到达点的位置,且(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积12【2018年新课标2卷文科】如图,在三棱锥中,为的中点(1)证明:平面;(2)若点在棱上,且,求点到平面的距离13【2018年新课标3卷文科】如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点(1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1