ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:528.50KB ,
资源ID:827919      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-827919-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2014高考数学(理浙江专版)一轮复习限时集训:7.7 空间向量在立体几何中的应用 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2014高考数学(理浙江专版)一轮复习限时集训:7.7 空间向量在立体几何中的应用 WORD版含答案.doc

1、限时集训(四十五)空间向量在立体几何中的应用(限时:50分钟满分:112分)1(满分14分)如图,在ABC中,ABC60,BAC90,AD是BC上的高,沿AD把ABD折起,使BDC90.(1)证明:平面ADB平面BDC;(2)设E为BC的中点,求与夹角的余弦值2(满分14分)(2013孝感模拟)如图所示,四棱锥PABCD中,底面ABCD为正方形,PD平面ABCD,PDAB2,E、F、G分别为PC、PD、BC的中点(1)求证:PAEF;(2)求二面角DFGE的余弦值3.(满分14分)如图,在正三棱柱ABCA1B1C1中,ABAA1,点D是A1B1的中点,点E在A1C1上且DEAE.(1)证明:平

2、面ADE平面ACC1A1;(2)求直线AD和平面ABC1所成角的正弦值4(满分14分)(2012江西高考)如图所示,在三棱柱ABCA1B1C1中,已知ABACAA1,BC4,点A1在底面ABC的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的余弦值5(满分14分)如图所示,在多面体ABCDA1B1C1D1中,上,下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1底面ABCD,AB2A1B12DD12a.(1)求异面直线AB1与DD1所成角的余弦值;(2)已知F是AD的中点,求证:

3、FB1平面BCC1B1;(3)在(2)的条件下,求二面角FCC1B的余弦值6(满分14分)如图,在四棱锥PABCD中,底面ABCD为菱形,BAD60,Q为AD的中点(1)若PAPD,求证:平面PQB平面PAD;(2)设点M在线段PC上,求证:PA平面MQB;(3)在(2)的条件下,若平面PAD平面ABCD,且PAPDAD2,求二面角MBQC的大小7(满分14分)(2012福建高考)如图所示,在长方体ABCDA1B1C1D1中,AA1AD1,E为CD中点(1)求证:B1EAD1;(2)在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求AP的长;若不存在,说明理由;(3)若二面角AB1E

4、A1的大小为30,求AB的长8(满分14分)在直角梯形ABCD中,ADBC,BC2AD2AB2,ABC90,如图(1)把ABD沿BD翻折,使得平面ABD平面BCD.(1)求证:CDAB;(2)若点M为线段BC中点,求点M到平面ACD的距离;(3)在线段BC上是否存在点N,使得AN与平面ACD所成角为60?若存在,求出的值;若不存在,说明理由答 案限时集训(四十五)1解:(1)证明:折起前AD是BC边上的高,当ABD折起后,ADDC,ADDB,又DBDCD,AD平面BDC,AD平面ABD,平面ABD平面BDC.(2)由BDC90及(1)知DA,DB,DC两两垂直,不妨设|DB|1,以D为坐标原点

5、,以,的方向为x,y,z轴的正方向建立如图所示的空间直角坐标系,易得D(0,0,0),B(1,0,0),C(0,3,0),A(0,0,),E,(1,0,0),与夹角的余弦值为cos,.2.解:(1)证明:以D为坐标原点,建立如图所示的空间直角坐标系Dxyz,则D(0,0,0),A(0,2,0),C(2,0,0),P(0,0,2),E(1,0,1),F(0,0,1),G(2,1,0)(1)(0,2,2),(1,0,0),0,PAEF.(2)易知(0,0,1),(2,1,1)设平面DFG的法向量为m(x1,y1,z1),则即令x11,得m(1,2,0)是平面DFG的一个法向量同理可得n(0,1,1

6、)是平面EFG的一个法向量,cosm,n,由图可知二面角DFGE为钝角,二面角DFGE的余弦值为.3解:(1)证明:由正三棱柱ABCA1B1C1的性质知AA1平面A1B1C1,又DE平面A1B1C1,所以DEAA1.而DEAE,AA1AEA,所以DE平面ACC1A1.又DE平面ADE,故平面ADE平面ACC1A1.(2)如图所示,设O是AC的中点,以O为原点建立空间直角坐标系不妨设AA1,则AB2,相关各点的坐标分别是A(0,1,0),B(,0,0),C1(0,1,),D.易知(,1,0),(0,2,),.设平面ABC1的一个法向量为n(x,y,z),则有解得xy,zy.故可取n(1,)所以,

7、cosn,.由此即知,直线AD和平面ABC1所成角的正弦值为.4解:(1)证明:连接AO,在AOA1中,作OEAA1于点E,因为AA1BB1,所以OEBB1.因为A1O平面ABC,所以A1OBC.因为ABAC,OBOC,得AOBC,所以BC平面AA1O,所以BCOE,所以OE平面BB1C1C,又AO1,AA1,得AE.(2)如图,分别以OA,OB,OA1所在直线为x,y,z轴,建立空间直角坐标系,则A(1,0,0),B(0,2,0),C(0,2,0),A1(0,0,2),由AA1得点E的坐标是,由(1)得平面BB1C1C的法向量是,设平面A1B1C的法向量n(x,y,z),由得令y1,得x2,

8、z1,即n(2,1,1),所以cosOE,n,即平面BB1C1C与平面A1B1C的夹角的余弦值是.5.解:以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则A(2a,0,0),B(2a,2a,0),C(0,2a,0),D1(0,0,a),F(a,0,0),B1(a,a,a),C1(0,a,a)(1)(a,a,a),(0,0,a),|cos,|,所以异面直线AB1与DD1所成角的余弦值为.(2)(a,a,a),(2a,0,0),(0,a,a),FB1BB1,FB1BC.BB1BCB,FB1平面BCC1B.(3)由(2)知,为平面BCC1B1的一个法

9、向量设n(x1,y1,z1)为平面FCC1的法向量,(0,a,a),(a,2a,0),得令y11,则x12,z11,n(2,1,1),cos,n,即二面角FCC1B的余弦值为.6解:(1)连接BD,四边形ABCD菱形,BAD60,ABD为正三角形,又Q为AD中点,ADBQ.PAPD,Q为AD的中点,ADPQ,又BQPQQ,AD平面PQB,AD平面PAD.平面PQB平面PAD.图(1)(2)连接AC交BQ于点N,如图(1):由AQBC可得,ANQCNB,.又,.PAMN.MN平面MQB,PA平面MQB,PA平面MQB.(3)由PAPDAD2,Q为AD的中点,则PQAD.图(2)又平面PAD平面A

10、BCD,PQ平面ABCD.以Q为坐标原点,分别以QA、QB、QP所在的直线为x,y,z轴,建立如图(2)所示的坐标系,则各点坐标为A(1,0,0),B(0,0),Q(0,0,0),P(0,0,)设平面MQB的法向量n(x,y,1),可得PAMN,解得n(,0,1)取平面ABCD的法向量m(0,0,1)cosm,n.故二面角MBQC的大小为60.7.解:(1)证明:以A为原点,的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系(如图)设ABa,则A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1),故(0,1,1),1(a,0,1),.011(1)10,B1EAD1

11、.(2)假设在棱AA1上存在一点P(0,0,z0),使得DP平面B1AE,此时(0,1,z0)又设平面B1AE的法向量n(x,y,z)n平面B1AE,n,n,得取x1,则y,za,得平面B1AE的一个法向量n.要使DP平面B1AE,只要n,有az00,解得z0.又DP平面B1AE,存在点P,满足DP平面B1AE,此时AP.(3)连接A1D,B1C,由长方体ABCDA1B1C1D1及AA1AD1,得AD1A1D.B1CA1D,AD1B1C.又由(1)知B1EAD1,且B1CB1EB1,AD1平面DCB1A1,是平面A1B1E的一个法向量,此时(0,1,1)设与n所成的角为,则cos .二面角AB

12、1EA1的大小为30,|cos |cos 30,即,解得a2,即AB的长为2.8解:(1)由已知条件可得BD2,CD2,CDBD.平面ABD平面BCD,平面ABD平面BCDBD.CD平面ABD.又AB平面ABD,CDAB.(2)以点D为原点,BD所在的直线为x轴,DC所在的直线为y轴,建立空间直角坐标系,如图由已知可得A(1,0,1),B(2,0,0),C(0,2,0),D(0,0,0),M(1,1,0),(0,2,0),(1,0,1),MC(1,1,0)设平面ACD的法向量为n(x,y,z),则n,n,令x1,得平面ACD的一个法向量为n(1,0,1),点M到平面ACD的距离d.(3)假设在线段BC上存在点N,使得AN与平面ACD所成角为60.设,01,则N(22,2,0),(12,2,1)又平面ACD的法向量n(1,0,1)且直线AN与平面ACD所成角为60,sin 60,可得82210,或(舍去)综上,在线段BC上存在点N,使AN与平面ACD所成角为60,此时.高考资源网版权所有!投稿可联系QQ:1084591801

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3