ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:70.42KB ,
资源ID:827296      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-827296-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题01 导数基础知识回顾.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

专题01 导数基础知识回顾.docx

1、导数章节知识题型全归纳专题01 导数基础知识回顾1. 导数的定义:设是函数定义域的一点,如果自变量在处有增量,则函数值也引起相应的增量;比值称为函数在点到之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做在处的导数。在点处的导数记作2 导数的几何意义:(求函数在某点处的切线方程)函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为3基本常见函数的导数: (C为常数) ; ; ; ; .4、导数的运算1.导数的四则运算:法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: 法则2:两个函数的积的导数,等于第

2、一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:常数与函数的积的导数等于常数乘以函数的导数: (为常数)法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:。2.复合函数的导数形如的函数称为复合函数。法则: .5、导数的应用1.函数的单调性与导数(1)设函数在某个区间可导,如果,则在此区间上为增函数;如果,则在此区间上为减函数。(2)如果在某区间内恒有,则为常函数。2函数的极点与极值:当函数在点处连续时,如果在附近的左侧0,右侧0,那么是极大值;如果在附近的左侧0,右侧0,那么是极小值.3函数的最值:一般地,在区间上连续的函数

3、在上必有最大值与最小值。函数求函数的一般步骤:求函数的导数,令导数解出方程的跟在区间列出的表格,求出极值及的值;比较端点及极值点处的函数值的大小,从而得出函数的最值4相关结论总结:可导的奇函数函数其导函数为偶函数.可导的偶函数函数其导函数为奇函数.6.导数题型归纳:题型一:切线型:1.求在某处的切线方程,2.求过某点的切线方程,3.已知切线方程求参数题型二:单调型:1.主导函数需“二次求导”型,2.主导函数为“一次函数”型,3.主导函数为“二次函数”型,4.已知函数单调型求参数,5.根据新函数单调性求解题型三:极值,最值型:1.求函数的极值,2.求函数的最值,3.已知函数极值与最值求参题型四:零点型:1.零点或根的个数问题,2.零点存在性定理的应用,3.零点的证明,4.极值点偏移问题题型五:存在性与恒成立问题:1.单变量恒成立问题,2.单变量存在性问题,3.双变量的恒成立与存在性问题,4.等式型恒成立与存在性问题题型六:与不等式有关的证明:1.单变量不等式证明,2.含有ex与lnx的不等式证明,3.数列型不等式证明的构造方法,4.求参或证明中的洛必达法则应用,5.拉格朗日中值定理的应用。

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1