1、必修2第三单元第1讲一、选择题1(2014年浙江)除草剂敏感型的大豆经辐射获得抗性突变体,且敏感基因与抗性基因是1对等位基因。下列叙述正确的是()A突变体若为1条染色体的片段缺失所致,则该抗性基因一定为隐性基因B突变体若为1对同源染色体相同位置的片段缺失所致,则再经诱变可恢复为敏感型C突变体若为基因突变所致,则再经诱变不可能恢复为敏感型D抗性基因若为敏感基因中的单个碱基对替换所致,则该抗性基因一定不能编码肽链【答案】A【解析】突变体若为1条染色体的片段缺失所致,假设抗性基因为显性,则敏感型也表现为显性,假设不成立,则抗性基因为隐性;突变体若为1对同源染色体相同位置的片段缺失所致,则此基因不存在
2、了,不能恢复为敏感型;基因突变是不定向的,再经诱变仍有可能恢复为敏感型;抗性基因若为敏感基因中的单个碱基对替换所致,有可能氨基酸序列不变或只有一个氨基酸改变或不能编码肽链或肽链合成到此终止,所以A正确。2(2013年海南)某二倍体植物染色体上的基因B2是由其等位基因B1突变而来的,如不考虑染色体变异,下列叙述错误的是()A该突变可能是碱基对替换或碱基对插入造成的B基因B1和B2编码的蛋白质可以相同,也可以不同C基因B1和B2指导蛋白质合成时使用同一套遗传密码D基因B1和B2可同时存存于同一个体细胞中或同一个配子中【答案】D【解析】基因突变是基因中碱基对的增添、缺失和替换导致的基因结构的改变,A
3、项正确;基因突变若是由碱基的替换造成的,可能替换后的基因片段转录形成的密码子与替换前基因片段转录的密码子决定的氨基酸相同,突变前后基因决定的蛋白质相同,否则将导致蛋白质不同,B项正确;遗传密码子具有通用性,C项正确;二倍体生物的配子中只有一个基因组,不存在等位基因,D项错误。3(2013年上海)编码酶X的基因中某个碱基被替换时,表达产物将变为酶Y。如表显示了与酶X相比,酶Y可能出现的四种状况,对这四种状况出现的原因判断正确的是()比较指标酶Y活性/酶X活性100%50%10%150%酶Y氨基酸数目/酶X氨基酸数目11少于1大于1A.状况一定是因为氨基酸序列没有变化B状况一定是因为氨基酸间的肽键
4、数减少了50%C状况可能是因为突变导致了终止密码位置变化D状况可能是因为突变导致tRNA的种类增加【答案】C【解析】某个碱基被替换,状况氨基酸的序列可能发生了变化;状况X与Y氨基酸的数目相等,肽键数可能不变;状况Y与X的氨基酸数目比小于1,编码的氨基酸的数量减少,可能是因为突变导致了终止密码位置变化;突变不会导致tRNA的种类增加。4(2012年江苏)某植株的一条染色体发生缺失突变,获得该缺失染色体的花粉不育,缺失染色体上具有红色显性基因B,正常染色体上具有白色隐性基因b(见图)。如以该植株为父本,测交后代中部分表现为红色性状。下列解释最合理的是()A减数分裂时染色单体1或2上的基因b突变为B
5、B减数第二次分裂时姐妹染色单体3与4自由分离C减数第二次分裂时非姐妹染色单体之间自由组合D减数第一次分裂时非姐妹染色单体之间交叉互换【答案】D【解析】从题中信息可知,突变植株为父本,减数分裂产生的雄配子分别有基因b和B,后者不育。正常情况下,测交后代表现型应都为白色性状,而题中已知测交后代中部分为红色性状,可推知父本减数分裂过程中产生了含B基因的可育花粉,而产生这种花粉最可能的原因是减同源染色体联会时非姐妹染色单体之间发生交叉互换,故D最符合题意。二、非选择题5(2014年北京)拟南芥的A基因位于1号染色体上,影响减数分裂时染色体交换频率,a基因无此功能;B基因位于5号染色体上,使来自同一个花
6、粉母细胞的四个花粉粒分离,b基因无此功能。用植株甲(AaBB)与植株乙(AAbb)作为亲本进行杂交实验,在F2中获得了所需的植株丙(aabb)。(1)花粉母细胞减数分裂时,联会形成的_经_染色体分离、姐妹染色单体分开,最终复制后的遗传物质被平均分配到四个花粉粒中。(2)a基因是通过将TDNA插入到A基因中获得的,用PCR法确定TDNA插入位置时,应从图1中选择的引物组合是_。图1(3)就上述两对等位基因而言,F1中有_种基因型的植株。F2中表现型为花粉粒不分离的植株所占比例应为_。(4)杂交前,乙的1号染色体上整合了荧光蛋白基因C、R。两代后,丙获得C、R基因(图2)。带有C、R基因的花粉粒能
7、分别呈现出蓝色、红色荧光。丙获得了C、R基因是由于它的亲代中的_在减数分裂形成配子时发生了染色体交换。图2丙的花粉母细胞进行减数分裂时,若染色体在C和R基因位点间只发生一次交换,则产生的四个花粉粒呈现出的颜色分别是_。本实验选用b基因纯合突变体是因为:利用花粉粒不分离的性状,便于判断染色体在C和R基因位点间_,进而计算出交换频率。通过比较丙和_的交换频率,可确定A基因的功能。【答案】(1)四分体同源(2)和(3)225%(4)父本和母本蓝色、红色、蓝和红叠加色、无色交换与否和交换次数乙【解析】(1)减数分裂过程中,同源染色体联会形成四分体,减数第一次分裂后期同源染色体分离。(2)DNA复制时,
8、子链延伸总从一条链的5端向3端进行的,选择图1中引物和时,即可将的右侧、的左侧共同覆盖区域的DNA片段大量扩增,再进行该片段的测序,即可确定T DNA在A基因中的插入位置。若选用、或、两引物组合,则无法对某一确定的DNA片段进行扩增和测序。(3)用植株甲(AaBB)与植株乙(AAbb)杂交,F1有AABb、AaBb两种基因型。F1自交得到的F2中,bb纯合的概率为1/4。(4)杂交前,乙中C、R基因与A基因位于1号染色体上,两代后,丙含a基因的1号染色体这一对同源染色体上分别获得了C基因和R基因,由于这一对同源染色体中的两条染色体分别来自丙的父本和母本,由此可知丙的亲代中父本和母本在减数分裂过
9、程中都发生了染色体交换。丙的花粉母细胞进行减数分裂时,若C、R所在染色体基因位点之间“只发生一次交换”,则复制后的C、R基因中的一个换至同源染色体中的非姐妹染色单体上,致使此染色单体含有C、R两种基因,表现为蓝和红叠加色。发生交换的另一条非姐妹染色单体则不含C、R基因,致使花粉粒无色。未发生交换的非姐妹染色单体上分别含C基因和R基因,花粉粒分别为蓝色和红色,所以四个花粉粒呈现颜色应为:红色、蓝色、蓝和红叠加色、无色。b基因不能使来自同一个花粉母细胞的四个花粉粒分离,本实验选用b基因纯合突变体是利用了花粉粒不分离的性状,便于统计,并判断出染色体在C和R基因位点间是否发生互换及交换的次数,并计算出
10、交换频率,通过丙(aa)和乙(AA)个体的交换频率进行比对,可确定A基因对于交换频率的影响。6(2013年新课标)一对相对性状可受多对等位基因控制,如某种植物花的紫色(显性)和白色(隐性)这对相对性状就受多对等位基因控制。科学家已从该种植物的一个紫花品系中选育出了5个基因型不同的白花品系,且这5个白花品系与该紫花品系都只有一对等位基因存在差异。某同学在大量种植该紫花品系时,偶然发现了1株白花植株,将其自交,后代均表现为白花。回答下列问题:(1)假设上述植物花的紫色(显性)和白色(隐性)这对相对性状受8对等位基因控制,显性基因分别用A、B、C、D、E、F、G、H表示,则紫花品系的基因型为_;上述
11、5个白花品系之一的基因型可能为_(写出其中一种基因型即可)。(2)假设该白花植株与紫花品系也只有一对等位基因存在差异,若要通过杂交实验来确定该白花植株是一个新等位基因突变造成的,还是属于上述5个白花品系中的一个,则:该实验的思路:_。预期的实验结果及结论:_。【答案】(1)AABBCCDDEEFFGGHHaaBBCCDDEEFFGGHH(2)用该白花植株的后代分别与5个白花品系杂交,观察子代花色在5个杂交组合中,如果子代全为紫花,说明该白花植株是新等位基因突变形成的;在5个杂交组合中,如果4个组合的子代全为紫花,1个组合的子代为白花,说明该白花植株属于这5个白花品系之一【解析】本题主要考查基因
12、自由组合定律的原理和应用。(1)植株的紫花和白花是由8对等位基因控制的,紫花为显性,且5种已知白花品系与该紫花品系都只有一对等位基因存在差异,据此可推断该紫花品系为8对等位基因的显性纯合子。上述5种白花品系都是只有一对基因为隐性纯合,另外7对等位基因为显性纯合,如aaBBCCDDEEFFGGHH、AAbbCCDDEEFFGGHH等。(2)该紫花品系的后代中出现了1株能稳定遗传的白花植株,且与紫花品系也只有一对等位基因存在差异,若已知5种白花品系中隐性纯合的那对基因分别为aa、bb、cc、dd、ee,则该突变白花植株的基因型可能与上述5种白花品系之一相同,也可能出现隐性纯合基因是ff或gg或hh的新突变。判断这两种情况的方法是让该白花植株的后代分别与5个白花品系杂交,预测子代花色遗传情况:若为新等位基因突变,则5种杂交组合中的子代应全为紫花;若该白花植株为上述5个白花品系之一,则与之基因型相同的一组杂交子代全为白花,其余4组杂交子代均为紫花。由此可判断该突变白花植株的类型。