1、高考资源网( ),您身边的高考专家浙江省“六市六校”联盟2014届高考模拟考试数学(理科)试题卷命题人:杭州第十一中学 吕蔚 审核人:安吉昌硕高中 一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知是虚数单位,则= A B C D 2.设集合,则等于A B C D3.条件,条件;若p是q的充分而不必要条件,则的取值范围是A B C D k=0,S=1k3开始结束是否k=k+1输出SS=S 4.已知两个不同的平面,和两条不重合的直线,则下列四个命题正确的是A若,则B若,则C若,则D若,则5.执行如图所示的程序框图,输出的S值为A2
2、B4 C8 D16 6.若,则向量与的夹角为A B C D7.函数的部分图象如图示,则将的图象向右平移个单位后,得到的图象解析式为A B C D8.已知,定义,其中,则等于A B C D9.已知分别是椭圆的左,右焦点,现以为圆心作一个圆恰好经过椭圆中心并且交椭圆于点,若过的直线是圆的切线,则椭圆的离心率为A B C D10.设x表示不超过x的最大整数(如2=2, =1),对于给定的nN*,定义x,则当x时,函数的值域是A. B. C. D.二、填空题:本大题共7小题,每小题4分,共28分。11.如图是某个四面体的三视图,该四面体的体积为 12.在等差数列中,则数列的前11项和S11等于 13.
3、二项式的展开式中常数项为,则= 14.从0,1,2,3,4,5这6个数字中任意取4个数字组成一个没有重复数字且能被3整除的四位数,这样的四位数有 个15.已知正数满足,则的最大值为 16.向量,为坐标原点,动点满足,则点构成图形的面积为 17.若对任意的都成立,则的最小值为 三、解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。18(本小题满分14分)在ABC中,角A,B,C的对边分别为a,b,c已知()求角A的大小;()若,ABC的面积为,求19(本小题满分14分)已知等差数列的公差不为零,其前n项和为,若=70,且成等比数列,()求数列的通项公式;CDEBA()设数
4、列的前n项和为,求证:20. (本小题满分15分)C如图,将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA平面ABD,AE=,()若,求证:AB平面CDE;()求实数的值,使得二面角A-EC-D的大小为6021(本小题满分15分) CBODFxy如图,已知圆,经过椭圆的右焦点F及上顶点B,过圆外一点倾斜角为的直线交椭圆于C,D两点,()求椭圆的方程;()若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围22(本小题满分14分)已知函数(),其中()若曲线与在点处相交且有相同的切线,求的值;()设,若对于任意的,函数在区间上的值恒为负数,求的取值范围浙江省“六市六校”联盟20
5、14届高考模拟考试数学(理科)评分标准一、选择题(每小题5分,共50分)题号12345678910答案ACBDCBDBAD二、填空题(每小题4分,共28分)1112 12132 13-84 1496 158 162 17三、解答题(共72分)18解:(),可得, -4分,可得 -7分()由()得SABC= ,解得bc=8 -10分由余弦定理,得, - 12分即 将代入,可得 - 14分19解:()由题知,即, -2分解得或(舍去), -4分所以数列的通项公式为 -4分()由()得 -7分 则 -8分则= -10分由可知,即 -11分由可知是递增数列,则 -13分可证得: -14分20解:()如
6、图建立空间指教坐标系,则 A(0,0,0),B(2,0,0),C(1,1,),D(0,2,0),E(0,0,), -2分设平面的一个法向量为,则有,取时, -4分,又不在平面内,所以平面; -7分()如图建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(1,1,),D(0,2,0),E(0,0,),,设平面的一个法向量为,则有,取时, -9分又平面的一个法向量为, -10分因为二面角的大小为, 即,解得 -14分又,所以 -15分注:几何解法相应给分21. 解:()圆G:经过点F、BF(2,0),B(0,), , -3分故椭圆的方程为 -5分 ()设直线的方程为由消去得设,则, -7分,= =-10分点F在圆G的外部, 即,解得或 -12分由=,解得又, -15分22解:(),切线斜率,-分由题知,即,解得 -5分()由题知对任意的,在上恒成立,即恒成立-7分设,则 Ks5u,令,则对任意的,恒有,则恒有当时,函数单调递减,当时,函数单调递增。-12分Ks5u,所以,即-14分Ks5u欢迎广大教师踊跃来稿,稿酬丰厚。