1、1(2016陕西省质检)一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在20,60)上的频率为0.8,则估计样本在40,50),50,60)内的数据个数共为()A19B17C16 D15解析:选D.由题意得样本数据在20,60)内的频数为300.824,则样本在40,50)和50,60)内的数据个数之和为244515.2(2014高考广东卷)已知某地区中小学生人数和近视情况分别如图和图所示为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A200,20 B100,20C200,10 D100,10解析:
2、选A.该地区中小学生总人数为3 5002 0004 50010 000,则样本容量为10 0002%200,其中抽取的高中生近视人数为2 0002%50%20,故选A.3(2016郑州第二次质量检测)已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m、n的比值()A1 B.C. D.解析:选D.由题中茎叶图可知甲的数据为27,30m、39,乙的数据为20n、32、34、38.由此可知乙的中位数是33,所以甲的中位数也是33,所以m3.由此可以得出甲的平均数为33,所以乙的平均数也为33,所以有33,所以n8,所以.4(2016邢台摸底考试)样本中共有五个个体,其值分别
3、为0,1,2,3,m.若该样本的平均值为1,则其样本方差为()A. B.C. D2解析:选D.依题意得m51(0123)1,样本方差s2(1202122222)2,即所求的样本方差为2.5(2016武汉调研)如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在30,35),35,40),40,45的上网人数呈现递减的等差数列分布,则年龄在35,40)的网民出现的频率为()A0.04 B0.06C0.2 D0.3解析:选C.由频率分布直方图的知识得,年龄在20,25)的频率为0.0150.05,25,30)的频率为0.0750.35,设年龄在30,35),3
4、5,40),40,45的频率为x,y,z,又x,y,z成等差数列,所以可得解得y0.2,所以年龄在35,40)的网民出现的频率为0.2.6(2016济南模拟)100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则测试成绩落在60,80)中的学生人数是_解析:测试成绩落在60,80)中的学生人数是10050.答案:507在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大构成等比数列an,已知a22a1,且样本容量为300,则小长方形面积最大的一组的频数为_解析:因为小长方形的面积由小到大构成等比数列an,且a22a1,所以样本的频率构成一个等比数列,且公比为2
5、,所以a12a14a18a115a11,所以a1,所以小长方形面积最大的一组的频数为3008a1160.答案:1608已知x是1,2,3,x,5,6,7这七个数据的中位数且1,2,x2,y这四个数据的平均数为1,则y的最小值为_解析:12x2y4,所以yx21.由中位数定义知,3x5,所以yx21.当x3,5时,函数yx21与y均为增函数,所以yx21为增函数,所以8.答案:9某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在50,60的频率及全班人数;(2)求分数在80,90之间的频数,并计算频率分布
6、直方图中80,90间的矩形的高解:(1)分数在50,60的频率为0.008100.08.由茎叶图知,分数在50,60之间的频数为2,所以全班人数为25.(2)分数在80,90之间的频数为25271024,频率分布直方图中80,90间的矩形的高为100.016.10某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件的统计数据的茎叶图如图所示,已知两组技工在单位时间内加工的合格零件的平均数都为10.(1)求出m,n的值;(2)求出甲、乙两组技工在单位时间内加工的合格零件的方差s和s,并由此分析两组技工的加工水平解:(1)根据题意可知:甲(78101210m)10,乙(9n101112)10,所以n8,m3.(2)s(710)2(810)2(1010)2(1210)2(1310)25.2,s(810)2(910)2(1010)2(1110)2(1210)22,因为甲乙,ss,所以甲、乙两组的整体水平相当,乙组技工更稳定一些