ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:972KB ,
资源ID:82168      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-82168-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2011届高考数学预测平面向量【概念、方法、题型、易误点及应试技巧总结】.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2011届高考数学预测平面向量【概念、方法、题型、易误点及应试技巧总结】.doc

1、概念、方法、题型、易误点及应试技巧总结平面向量一向量有关概念:1向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如:已知A(1,2),B(4,2),则把向量按向量(1,3)平移后得到的向量是_(答:(3,0)2零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;3单位向量:长度为一个单位长度的向量叫做单位向量(与共线的单位向量是);4相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:,规定零向量和任何向量

2、平行。提醒:相等向量一定是共线向量,但共线向量不一定相等;两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;平行向量无传递性!(因为有);三点共线共线;6相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是。如下列命题:(1)若,则。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若,则是平行四边形。(4)若是平行四边形,则。(5)若,则。(6)若,则。其中正确的是_(答:(4)(5)二向量的表示方法:1几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;2符号表示法:用一个小写的英文字母来表示,如,

3、等;3坐标表示法:在平面内建立直角坐标系,以与轴、轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为,称为向量的坐标,叫做向量的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。三平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数、,使a=e1e2。如(1)若,则_(答:);(2)下列向量组中,能作为平面内所有向量基底的是 A. B. C. D. (答:B);(3)已知分别是的边上的中线,且,则可用向量表示为_(答:);(4)已知中,点在边上,且,则的值是_(答:0)四实数与向量的积:实数与向量的积是一个向量

4、,记作,它的长度和方向规定如下:当0时,的方向与的方向相同,当0;当P点在线段 PP的延长线上时1;当P点在线段PP的延长线上时;若点P分有向线段所成的比为,则点P分有向线段所成的比为。如若点分所成的比为,则分所成的比为_(答:)3线段的定比分点公式:设、,分有向线段所成的比为,则,特别地,当1时,就得到线段PP的中点公式。在使用定比分点的坐标公式时,应明确,、的意义,即分别为分点,起点,终点的坐标。在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比。如(1)若M(-3,-2),N(6,-1),且,则点P的坐标为_(答:);(2)已知,直线与线段交于,且,则等于

5、_(答:或)十一平移公式:如果点按向量平移至,则;曲线按向量平移得曲线.注意:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊!如(1)按向量把平移到,则按向量把点平移到点_(答:(,);(2)函数的图象按向量平移后,所得函数的解析式是,则_(答:)12、向量中一些常用的结论:(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;(2),特别地,当同向或有;当反向或有;当不共线(这些和实数比较类似).(3)在中,若,则其重心的坐标为。如若ABC的三边的中点分别为(2,1)、(-3,4)、(-1,-1),则ABC的重心的坐标为_(答:);为的重心,特别地为的重心;为的垂心;向量所在直线过的内心(是的角平分线所在直线);的内心;(3)若P分有向线段所成的比为,点为平面内的任一点,则,特别地为的中点;(4)向量中三终点共线存在实数使得且.如平面直角坐标系中,为坐标原点,已知两点,若点满足,其中且,则点的轨迹是_(答:直线AB)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3