ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:173KB ,
资源ID:816382      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-816382-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2014高考数学(理)一轮复习总教案:10.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2014高考数学(理)一轮复习总教案:10.doc

1、10.5直线、平面垂直的判定及其性质典例精析题型一面面垂直的判定与性质【例1】 平面平面,A,B,AB与平面、所成的角分别为和,求AB与,的交线l所成的角的大小.【解析】过A、B分别作AAl,BBl,垂足分别为A、B,则AA,BB.连接AB,AB,则ABA,BAB.设AB1,则AA,AB,BB,所以AB.过B作BCl且BC,连接AC、AC,则ABC为AB与l所成的角,因为ABBC,且BBAB,所以ABBC为矩形,所以ACBC.又因为AABC,AAACA,所以BC平面AAC,所以ACBC.在RtACB中,cosABC,所以ABC,即AB与l所成的角为.【点拨】此题关键是根据面面垂直的性质,构造直

2、角三角形.【变式训练1】如图一所示,已知四棱柱ABCDA1B1C1D1的底面为正方形,O1、O分别为上、下底面的中心,且A1在底面ABCD内的射影是O.求证:平面O1DC平面ABCD.【证明】要证明平面O1DC与平面ABCD垂直,考虑到图中已知平面ABCD的垂线A1O,因而设法在平面O1DC中找出A1O的平行线.如图二所示,连接AC,BD,A1C1,则O为AC、BD的交点,O1为A1C1、B1D1的交点.由棱柱的性质知:A1O1OC,且A1O1OC,所以四边形A1OCO1为平行四边形,所以A1OO1C.又A1O平面ABCD,所以O1C平面ABCD,又O1C平面O1DC,所以平面O1DC平面AB

3、CD.题型二线面垂直的判定与性质【例2】 RtABC所在平面外一点S满足SASBSC,D为斜边AC的中点.(1)求证:SD平面ABC;(2)若ABBC,求证:BD平面SAC.【证明】(1)设E是AB的中点.因为D是AC的中点.所以DEBC,又BCAB,所以DEAB.因为SASB,所以SEAB,又SEDEE,所以AB平面SDE,而SD平面SDE,所以ABSD,又SASC,D为AC的中点,所以SDAC.而ABACA,所以SD平面ABC.(2)若ABBC,则BDAC.又由(1)知,SD平面ABC,所以SDBD,而SDACD,所以BD平面SAC.【点拨】证明直线与平面垂直,关键在于证明直线与平面内的两

4、相交直线垂直.【变式训练2】如图,在斜三棱柱ABCA1B1C1中,BAC90,BC1AC,则C1在上底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.ABC内部【解析】选A.题型三折叠问题【例3】 在四边形ABCD中,ADBC,ADAB,BCD45,BAD90,将ABD沿对角线BD折起,记折起后点A的位置为P,且使平面PBD平面BCD,如图所示:(1)求证:平面PBC平面PDC;(2)在折叠前的四边形ABCD中,作AEBD于E,过E作EFBC于F,求折叠后的图形中PFE的正切值.【解析】(1)折叠前,在四边形ABCD中,ADBC,ADAB,BAD90,所以ABD为等腰直

5、角三角形.又因为BCD45,所以BDC90.折叠后,因为平面PBD平面BCD,CDBD,所以CD平面PBD,又因为PB平面PBD,所以CDPB.又因为PBPD,PDCDD,所以PB平面PDC,又PB平面PBC,故平面PBC平面PDC.(2)AEBD,EFBC,折叠后的这些位置关系不变,所以PEBD,又平面PBD平面BCD,所以PE平面BCD,所以PEEF,设ABADa,则BDa,所以PEaBE,在RtBEF中,EFBEsin 45aa.在RtPFE中,tanPFE.【点拨】翻折与展开是一个问题的两个方面,不论是翻折还是展开,均要注意平面图形与立体图形各个对应元素的相对变化,元素间的大小与位置关

6、系.一般而言,在翻折过程中, 处在同一个半平面内的元素是不变的,弄清这一点是解决这类问题的关键.【变式训练3】如图,平行四边形ABCD中,DAB60,AB2,AD4.将CBD沿BD折起到EBD的位置,使平面EBD平面ABD.(1)求证:ABDE;(2)求三棱锥EABD的侧面积.【解析】(1)证明:在ABD中,因为AB2,AD4,DAB60,所以BD2.所以AB2BD2AD2,所以ABBD.又因为平面EBD平面ABD,平面EBD平面ABDBD,AB平面ABD,所以AB平面EBD.因为DE平面EBD,所以ABDE.(2)由(1)知ABBD.因为CDAB,所以CDBD. 从而DEBD.在RtDBE中,因为DB2,DEDCAB2,所以SBDEDBDE2.又因为AB平面EBD,BE平面EBD,所以ABBE.因为BEBCAD4,所以SABEABBE4.因为DEBD,平面EBD平面ABD,所以ED平面ABD,而AD平面ABD,所以EDAD,所以SADEADDE4.综上,三棱锥E-ABD的侧面积S=8+2.总结提高垂直关系是空间元素间的重要位置关系之一,是立体几何中的重点,也是历年来高考考查的点.解此类题的关键是三种垂直关系的相互转化.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3