ImageVerifierCode 换一换
格式:PPT , 页数:29 ,大小:1.08MB ,
资源ID:814104      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-814104-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(16.1第1课时二次根式的概念课件.ppt)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

16.1第1课时二次根式的概念课件.ppt

1、16.1 二根次式第十六章 二次根式 导入新课 讲授新课 当堂练习 课堂小结 第1课时 二次根式的概念学习目标 1.理解二次根式的概念.(重点)2.掌握二次根式有意义的条件.(重点)3.会利用二次根式的非负性解决相关问题.(难点)导入新课情景引入 里约奥运会上,哪位奥运健儿给你留下了深刻的印象?你能猜出下面表情包是谁吗?你们是根据哪些特征猜出的呢?下面来看傅园慧在里约奥运会赛后的采访视频,注意前方高能表情包.通过表情包来辨别人物,最重要的是根据个人的特征,那么数学的特征是什么呢?“数学根本上是玩概念的,不是玩技巧,技巧不足道也.”-中科院数学与系统科学研究院 李邦河 复习引入 问题1 什么叫做

2、平方根?一般地,如果一个数的平方等于a,那么这个数叫做a的平方根.问题2 什么叫做算术平方根?如果 x2=a(x0),那么 x 称为 a 的算术平方根.用表示.(0)a a 问题3 什么数有算术平方根?我们知道,负数没有平方根.因此,在实数范围内开平方时,被开方数只能是正数或0.思考 用带根号的式子填空,这些结果有什么特点?(1)如图的海报为正方形,若面积为2 m2,则边长为_m;若面积为S m2,则边长为_m(2)如图的海报为长方形,若长是宽的2倍,面积为6 m2,则它的宽为_m图图2S3(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:m)满足关系

3、h=5t2,如果用含有h 的式子表示 t,那么t为_5h问题1 这些式子分别表示什么意义?5h分别表示2,S,3,的算术平方根上面问题中,得到的结果分别是:,2S35h讲授新课二次根式的概念及有意义的条件 一根指数都为2;被开方数为非负数.问题2 这些式子有什么共同特征?归纳总结 一般地,我们把形如 的式子叫做二次根式.“”称为二次根号.(0)aa 两个必备特征 外貌特征:含有“”内在特征:被开方数a 0注意:a可以是数,也可以是式.例1 下列各式中,哪些是二次根式?哪些不是?23(1)32;(2)6;(3)12;(4)-0(5),;(6)1;(7)5.m mxy x ya;异号 解:(1)(

4、4)(6)均是二次根式,其中a2+1属于“非负数+正数”的形式一定大于零.(2)(3)(5)(7)均不是二次根式.是否含二次根号 被开方数是不是非负数 二次根式 不是二次根式 是 是 否 否 分析:典例精析 例2 当x是怎样的实数时,在实数范围内有意义?2x 解:由x-20,得x2.当x2时,在实数范围内有意义.2x【变式题1】当x是怎样的实数时,下列各式在实数范围内有意义?111x();解:由题意得x-10,x1.3(2).1xx解:被开方数需大于或等于零,3+x0,x-3.分母不能等于零,x-10,x1.x-3 且x1.要使二次根式在实数范围内有意义,即需满足被开方数0,列不等式求解即可.

5、若式子为分式,应同时考虑分母不为零.归纳【变式题2】当x是怎样的实数时,下列各式在实数范围内有意义?2(1)21;xx2(2)23.xx解:(1)无论x为何实数,当x=1时,在实数范围内有意义.(2)无论x为何实数,-x2-2x-3=-(x+1)2-20,无论x为何实数,在实数范围内都无意义.221xx223xx被开方数是多项式时,需要对组成多项式的项进行恰当分组凑成含完全平方的形式,再进行分析讨论.归纳222110 xxx ,(1)单个二次根式如有意义的条件:A0;A(2)多个二次根式相加如有意义的条件:.ABN00.0ABN;(3)二次根式作为分式的分母如有意义的条件:A0;BA(4)二次

6、根式与分式的和如有意义的条件:A0且B0.1AB归纳总结 1.下列各式:.一定是二次根式的有()2233;5;112721axxxx;;A.3个B.4个C.5个D.6个B2.(1)若式子在实数范围内有意义,则x的取值范围是_;12x(2)若式子在实数范围内有意义,则x的取值范围是_.12xxx 1x 0且x2练一练问题1 当x是怎样的实数时,在实数范围内有意义?呢?2x3x前者x为全体实数;后者x为正数和0.当a0时,表示a的算术平方根,因此0;当a=0时,表示0的算术平方根,因此=0.这就是说,当a0时,0.aaaaa问题2 二次根式的被开方数a的取值范围是什么?它本身的取值范围又是什么?a

7、二次根式的双重非负性 二二次根式的实质是表示一个非负数(或式)的算术平方根.对于任意一个二次根式 ,我们知道:a(1)a为被开方数,为保证其有意义,可知a0;(2)表示一个数或式的算术平方根,可知0.aa二次根式的被开方数非负 二次根式的值非负 二次根式的双重非负性 归纳总结 例3 若,求a-b+c的值.223(4)0abc解:由题意可知a-2=0,b-3=0,c-4=0,解得a=2,b=3,c=4.所以a-b+c=2-3+4=3.多个非负数的和为零,则可得每个非负数均为零.初中阶段学过的非负数主要有绝对值、偶次幂及二次根式.归纳 典例精析 例4 已知y=,求3x+2y的算术平方根.338xx

8、解:由题意得x=3,y=8,3x+2y=25.25的算术平方根为5,3x+2y的算术平方根为53 030 xx ,【变式题】已知a,b为等腰三角形的两条边长,且a,b满足,求此三角形的周长3264baa解:由题意得a=3,b=4.当a为腰长时,三角形的周长为3+3+4=10;当b为腰长时,三角形的周长为4+4+3=1130260aa,若,则根据被开方数大于等于0,可得a=0.归纳yaab 已知|3x-y-1|和互为相反数,求x+4y的平方根24xy解:由题意得3x-y-1=0且2x+y-4=0解得x=1,y=2x+4y=1+24=9,x+4y的平方根为3.练一练当堂练习2.式子 有意义的条件是

9、 ()236x A.x2 B.x2 C.x2 D.x23.当x=_时,二次根式取最小值,其最小值为_1.下列式子中,不属于二次根式的是()CDa CA-11x 04.当a是怎样的实数时,下列各式在实数范围内有 意义?(1)1;(2)23;2(3);(4).5aaaa(1)-101.aa 解:,3(2)230.2aa ,(3)00.aa ,(4)505.aa,5.(1)若二次根式有意义,求m的取值范围解:由题意得m-20且m2-40,解得m2且m-2,m2,m2(2)无论x取任何实数,代数式都有意义,求m的取值范围26xxm解:由题意得x2+6x+m0,即(x+3)2+m-90.(x+3)20,

10、m-90,即m9.422 mm6.若x,y是实数,且y,求的值.1112xx 11yy解:根据题意得x=1.y,y,.1112xx 1211111yyyy 1 010 xx ,7.先阅读,后回答问题:当x为何值时,有意义?解:由题意得x(x-1)0,由乘法法则得解得x1 或x0.即当x1 或x0时,有意义.1x x 001 01 0 xxxx,或,1x x 能力提升:体会解题思想后,试着解答:当x为何值时,有意义?221xx解:由题意得则解得x2或x,即当x2或x时,有意义2021xx ,202021 021 0 xxxx,或,1212221xx课堂小结二次根式 定义 带有二次根号 在有意义条件下求字母的取值范围 抓住被开方数必须为非负数,从而建立不等式求出其解集.被开方数为非负数 二次根式的双重非负性 二次根式 中,a0且 0 aa

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3