ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:294.55KB ,
资源ID:81101      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-81101-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《创新设计-课堂讲义》2016-2017学年高中数学(人教版选修2-2)课时作业:第一章 导数及其应用 1.5.1~1.5.2 .docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《创新设计-课堂讲义》2016-2017学年高中数学(人教版选修2-2)课时作业:第一章 导数及其应用 1.5.1~1.5.2 .docx

1、高考资源网() 您身边的高考专家15.1曲边梯形的面积15.2汽车行驶的路程明目标、知重点1了解“以直代曲”、“以不变代变”的思想方法 2会求曲边梯形的面积和汽车行驶的路程1曲边梯形的面积(1)曲边梯形:由直线xa,xb(ab),y0和曲线yf(x)所围成的图形称为曲边梯形(如图所示)(2)求曲边梯形面积的方法把区间a,b分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图所示)(3)求曲边梯形面积的步骤:分割,近似代替,求和,取极限2求变速直

2、线运动的(位移)路程如果物体做变速直线运动,速度函数为vv(t),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在atb内所作的位移s.情境导学任何一个平面图形都有面积,其中矩形、正方形、三角形、平行四边形、梯形等平面多边形的面积,可以利用相关公式进行计算如图所示的平面图形,是由直线xa,xb(ab),y0和曲线yf(x)所围成的,称之为曲边梯形,如何计算这个曲边梯形的面积呢?探究点一求曲边梯形的面积思考1如何计算下列两图形的面积?答直接利用梯形面积公式求解转化为三角形和梯形求解问题如图,如何求由抛物线yx2与直线x1,y0所围成的平面图形的面积S?思考2图中的图形与我们熟悉的“直边

3、图形”有什么区别?答已知图形是由直线x1,y0和曲线yx2所围成的,可称为曲边梯形,曲边梯形的一条边为曲线段,而“直边图形”的所有边都是直线段思考3能否将求曲边梯形的面积问题转化为求“直边图形”的面积问题?(归纳主要步骤)答(如图)可以通过把区间0,1分成许多小区间,将曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值进行求和,就得到曲边梯形面积的近似值,随着拆分越来越细,近似程度会越来越好SnSi()2x()2(i1,2,n)0()2()21222(n1)2(1)(1)SSn (1)(1).求曲边梯

4、形的面积可以通过分割、近似代替、求和、取极限四个步骤完成思考4在“近似代替”中,如果认为函数f(x)x2在区间,(i1,2,n)上的值近似地等于右端点处的函数值f(),用这种方法能求出S的值吗?若能求出,这个值也是吗?取任意i,处的函数值f(i)作为近似值,情况又怎样?其原理是什么?答以上方法都能求出S.我们解决此类问题的原理是“近似代替”和“以直代曲”,在极限状态下,小曲边梯形可以看做小矩形例1求由直线x0,x1,y0和曲线yx2所围成的图形的面积解(1)分割将区间0,1等分为n个小区间:0,1,每个小区间的长度为x.过各分点作x轴的垂线,把曲边梯形分成n个小曲边梯形,它们的面积分别记作S1

5、,S2,Sn.(2)近似代替在区间,(i1,2,n)上,以的函数值2作为高,小区间的长度x作为底边的小矩形的面积作为第i个小曲边梯形的面积,即Si()2.(3)求和曲边梯形的面积近似值为SSi()20()2()2()21222(n1)2(1)(1)(4)取极限曲边梯形的面积为S (1)(1).反思与感悟求曲边梯形的思想及步骤:(1)思想:以直代曲、逼近;(2)步骤:分割近似代替求和取极限;(3)关键:近似代替;(4)结果:分割越细,面积越精确跟踪训练1求由抛物线yx2与直线y4所围成的曲边梯形的面积解yx2为偶函数,图象关于y轴对称,所求曲边梯形的面积应为抛物线yx2(x0)与直线x0,y4所

6、围图形面积S阴影的2倍,下面求S阴影由,得交点为(2,4),如图所示,先求由直线x0,x2,y0和曲线yx2围成的曲边梯形的面积(1)分割将区间0,2 n等分,则x, 取i.(2)近似代替求和Sn2122232(n1)2(1)(1)(3)取极限SSn (1)(1).所求平面图形的面积为S阴影24.2S阴影,即抛物线yx2与直线y4所围成的图形面积为.探究点二求变速运动的路程思考利用导数我们解决了“已知物体运动路程与时间的关系,求物体运动速度”的问题反之,如果已知物体的速度与时间的关系,如何求其在一定时间内经过的路程呢?答物体以速度v做匀速直线运动时,经过时间t所行驶的路程为svt.如果物体做变

7、速直线运动,与求曲边梯形面积类似,我们采取“以不变代变”的方法,把时间t分割成许多“小段”,在每一“小段”时间内物体的运动可以看做匀速直线运动,于是把求变速直线运动的路程问题,化归为求匀速直线运动的路程问题例2汽车以速度v做匀速直线运动时,经过时间t所行驶的路程svt.如果汽车做变速直线运动,在时刻t的速度为v(t)t22(单位:km/h),那么它在0t1这段时间行驶的路程是多少?解分割将时间区间0,1分成n个小区间,0,1,则第i个小区间为,(i1,2,n)(2)近似代替第i个小矩形的高为v(),siv()()22.(3)求和sn()22021222(n1)222(1)(1)2.(4)取极限

8、ssn(1)(1)2.这段时间行驶的路程为 km.反思与感悟(1)把变速直线运动的路程问题化归为匀速直线运动的路程问题,通过分割、近似代替、求和、取极限四步解决(2)从函数的角度来看,求变速运动的路程,就是求速度函数v(t)t22在t0,t1,v(t)0形成的曲边梯形的面积,这就是数学方法在物理应用中的体现跟踪训练2有一辆汽车在笔直的公路上变速行驶,在时刻t的速度为v(t)3t22(单位:km/h),那么该汽车在0t2(单位:h)这段时间内行驶的路程s(单位:km)是多少?解(1)分割在时间区间0,2上等间隔地插入n1个分点,将它分成n个小区间,记第i个小区间为,(i1,2,n),其长度为t.

9、每个时间段上行驶的路程记为si(i1,2,n),则显然有ssi.(2)近似代替取i(i1,2,n),用小矩形的面积si近似地代替si,于是sisiv()t3()22(i1,2,n)(3)求和snsi()(1222n2)448(1)(1)4.从而得到s的近似值svn.(4)取极限ssn8(1)(1)48412.所以这段时间内行驶的路程为12 km.1把区间1,3 n等分,所得n个小区间的长度均为()A. B. C. D.答案B解析区间1,3的长度为2,故n等分后,每个小区间的长度均为.2函数f(x)x2在区间上()Af(x)的值变化很小Bf(x)的值变化很大Cf(x)的值不变化D当n很大时,f(

10、x)的值变化很小答案D解析当n很大,即x很小时,在区间,上,可以认为f(x)x2的值变化很小,近似地等于一个常数3在“近似代替”中,函数f(x)在区间xi,xi1上的近似值等于()A只能是左端点的函数值f(xi)B只能是右端点的函数值f(xi1)C可以是该区间内任一点的函数值f(i)(ixi,xi1)D以上答案均正确答案C4求由曲线yx2与直线x1,x2,y0所围成的平面图形面积时,把区间5等分,则面积的近似值(取每个小区间的左端点)是_答案1.02解析将区间5等分所得的小区间为1,2,于是所求平面图形的面积近似等于(1)1.02.呈重点、现规律求曲边梯形面积和汽车行驶的路程的步骤:(1)分割

11、:n等分区间a,b;(2)近似代替:取点ixi1,xi;(3)求和:(i);(4)取极限:s(i).“近似代替”也可以用较大的矩形来代替曲边梯形,为了计算方便,可以取区间上的一些特殊点,如区间的端点(或中点).一、基础过关1当n很大时,函数f(x)x2在区间,上的值,可以近似代替为()Af() Bf()Cf() Df(0)答案C2在等分区间的情况下f(x)(x0,2)及x轴所围成的曲边梯形面积和式的极限形式正确的是()A.B.C. ()D.n答案B解析x.和式为应选B.3把区间a,b (ab)n等分之后,第i个小区间是()A,B(ba),(ba)Ca,aDa(ba),a(ba)答案D解析区间a

12、,b(ab)长度为(ba),n等分之后,每个小区间长度均为,第i个小区间是a(ba),a(ba)(i1,2,n)4一物体沿直线运动,其速度v(t)t,这个物体在t0到t1这段时间内所走的路程为()A. B.C1 D.答案B解析曲线v(t)t与直线t0,t1,横轴围成的三角形面积S即为这段时间内物体所走的路程5由直线x1,y0,x0和曲线yx3所围成的曲边梯形,将区间4等分,则曲边梯形面积的的近似值(取每个区间的右端点)是()A. B.C. D.答案D解析将区间0,1四等分,得到4个小区间:0,1,以每个小区间右端点的函数值为高,4个小矩形的面积和为曲边梯形面积的近似值S()3()3()313.

13、6若做变速直线运动的物体v(t)t2,在0ta内经过的路程为9,则a的值为()A1 B2 C3 D4答案C解析将区间0,an等分,记第i个区间为,(i1,2,n),此区间长为,用小矩形面积()2近似代替相应的小曲边梯形的面积,则 ()2(1222n2)(1)(1)近似地等于速度曲线v(t)t2与直线t0,ta,t轴围成的曲边梯形的面积依题意得(1)(1)9,9,解得a3.7求直线x0,x2,y0与曲线yx2所围成的曲边梯形的面积解令f(x)x2.(1)分割将区间0,2 n等分,分点依次为x00,x1,x2,xn1,xn2.第i个区间为,(i1,2,n),每个区间长度为x.(2)近似代替、求和取

14、i(i1,2,n),Snf()x ()2i2(1222n2)(2)(3)取极限SliSnli (2),即所求曲边梯形的面积为.二、能力提升8. _.答案解析 (12n).9在求由抛物线yx26与直线x1,x2,y0所围成的平面图形的面积时,把区间1,2等分成n个小区间,则第i个区间为_答案,10已知某物体运动的速度为vt,t0,10,若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为_答案55解析把区间0,1010等分后,每个小区间右端点处的函数值为n(n1,2,10),每个小区间的长度为1.物体运动的路程近似值s1(1210)55.11已知自由落体的运动

15、速度vgt,求在时间区间0,t内物体下落的距离解(1)分割:将时间区间0,t分成n等份把时间0,t分成n个小区间,则第i个小区间为t,(i1,2,n),每个小区间所表示的时间段tt,在各个小区间物体下落的距离记作si(i1,2,n)(2)近似代替:在每个小区间上以匀速运动的路程近似代替变速运动的路程在t,上任取一时刻i(i1,2,n),可取i使v(i)gt近似代替第i个小区间上的速度,因此在每个小区间上自由落体t内所经过的距离可近似表示为sigt(i1,2,n)(3)求和:snsigt012(n1)gt2(1)(4)取极限:s gt2(1)gt2.即在时间区间0,t内物体下落的距离为gt2.三、探究与拓展12某物体做变速运动,设该物体在时间t的速度为v(t),求物体在t1到t2这段时间内运动的路程s.解(1)分割:将区间1,2等分割成n个小区间1,1(i1,2,n),区间长度为t,每个时间段内行驶的路程记为si(i1,2,n),则snsi.(2)近似代替:i1(i1,2,n),siv(1)t6()2(i1,2,n)(3)求和:sn6n()6n()3.(4)取极限:ssn3.- 13 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3