ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:68KB ,
资源ID:809949      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-809949-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(甘肃省会宁县第二中学高中数学选修2-2同步练习 2.3 数学归纳法(新人教A版选修2-2).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

甘肃省会宁县第二中学高中数学选修2-2同步练习 2.3 数学归纳法(新人教A版选修2-2).doc

1、选修2-2 2. 3 数学归纳法一、选择题1用数学归纳法证明11)时,第一步应验证不等式()A1n22”这一命题,证明过程中应验证()An1时命题成立Bn1,n2时命题成立Cn3时命题成立Dn1,n2,n3时命题成立答案D解析假设nk时不等式成立,即2kk22,当nk1时2k122k2(k22)由2(k22)(k1)24k22k30(k1)(k3)0k3,因此需要验证n1,2,3时命题成立故应选D.8已知f(n)(2n7)3n9,存在自然数m,使得对任意nN*,都能使m整除f(n),则最大的m的值为()A30 B26C36 D6答案C解析因为f(1)36,f(2)108336,f(3)3601

2、036,所以f(1),f(2),f(3)能被36整除,推测最大的m值为36.9已知数列an的前n项和Snn2an(n2),而a11,通过计算a2、a3、a4,猜想an()A. B.C. D.答案B解析由Snn2an知Sn1(n1)2an1Sn1Sn(n1)2an1n2anan1(n1)2an1n2anan1an(n2)当n2时,S24a2,又S2a1a2,a2a3a2,a4a3.由a11,a2,a3,a4猜想an,故选B.10对于不等式n1(nN),某学生的证明过程如下:(1)当n1时,11,不等式成立(2)假设nk(kN)时,不等式成立,即k1,则nk1时,(n2)证明当n2时,左0右,不等

3、式成立假设当nk(k2,kN*)时,不等式成立即成立那么nk1时,当nk1时,不等式成立据可知,不等式对一切nN*且n2时成立17在平面内有n条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同一点求证:这n条直线将它们所在的平面分成个区域证明(1)n2时,两条直线相交把平面分成4个区域,命题成立(2)假设当nk(k2)时,k条直线将平面分成块不同的区域,命题成立当nk1时,设其中的一条直线为l,其余k条直线将平面分成块区域,直线l与其余k条直线相交,得到k个不同的交点,这k个点将l分成k1段,每段都将它所在的区域分成两部分,故新增区域k1块从而k1条直线将平面分成k1块区域所以nk1

4、时命题也成立由(1)(2)可知,原命题成立18(2010衡水高二检测)试比较2n2与n2的大小(nN*),并用数学归纳法证明你的结论分析由题目可获取以下主要信息:此题选用特殊值来找到2n2与n2的大小关系;利用数学归纳法证明猜想的结论解答本题的关键是先利用特殊值猜想解析当n1时,2124n21,当n2时,2226n24,当n3时,23210n29,当n4时,24218n216,由此可以猜想,2n2n2(nN*)成立下面用数学归纳法证明:(1)当n1时,左边2124,右边1,所以左边右边,所以原不等式成立当n2时,左边2226,右边224,所以左边右边;当n3时,左边23210,右边329,所以左边右边(2)假设nk时(k3且kN*)时,不等式成立,即2k2k2.那么nk1时,2k1222k22(2k2)22k22.又因:2k22(k1)2k22k3(k3)(k1)0,即2k22(k1)2,故2k12(k1)2成立根据(1)和(2),原不等式对于任何nN*都成立

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3