ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:1.12MB ,
资源ID:808032      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-808032-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《推荐》专题02 导数-2017年高考数学(文)试题分项版解析 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《推荐》专题02 导数-2017年高考数学(文)试题分项版解析 WORD版含解析.doc

1、1.【2017浙江,7】函数y=f(x)的导函数的图像如图所示,则函数y=f(x)的图像可能是【答案】D【解析】试题分析:原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D【考点】 导函数的图象【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数的正负,得出原函数的单调区间2.【2017课标1,文14】曲线在点(1,2)处的切线方程为_【答案】【解析】【考点】导数几何意义【名师点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜

2、率,其求法为:设是曲线上的一点,则以的切点的切线方程为:若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为3.【2017天津,文10】已知,设函数的图象在点(1,)处的切线为l,则l在y轴上的截距为 .【答案】 【解析】【考点】导数的几何意义【名师点睛】本题考查了导数的几何意义,属于基础题型,函数在点处的导数的几何意义是曲线在点处的切线的斜率相应地,切线方程为注意:求曲线切线时,要分清在点处的切线与过点的切线的不同,谨记,有切点直接带入切点,没切点设切点,建立方程组求切点.4.【2017课标1,文21】已知函数=ex(exa)a2x(1)讨论的单调性;(2)若,求a的取值范围

3、【答案】(1)当,在单调递增;当,在单调递减,在单调递增;当,在单调递减,在单调递增;(2)【解析】试题分析:(1)分,分别讨论函数的单调性;(2)分,分别解,从而确定a的取值范围试题解析:(1)函数的定义域为,若,则,在单调递增若,则由得当时,;当时,所以在单调递减,在单调递增若,则由得当时,;当时,故在单调递减,在单调递增【考点】导数应用【名师点睛】本题主要考查导数的两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出,有的正负,得出函数的单调区间;(二)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数

4、极值或最值5.【2017课标II,文21】设函数.(1)讨论的单调性;(2)当时,求的取值范围.【答案】()在 和单调递减,在单调递增() 【解析】试题分析:(1)先求函数导数,再求导函数零点,列表分析导函数符号确定单调区间(2)对分类讨论,当a1时,满足条件;当时,取,当0a1时,取,.试题解析:(1) 令得 当时,;当时,;当时,所以在 和单调递减,在单调递增当时,取 综上,a的取值范围1,+) 【考点】利用导数求函数单调区间,利用导数研究不等式恒成立【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数

5、的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.6.【2017课标3,文21】已知函数=lnx+ax2+(2a+1)x(1)讨论的单调性;(2)当a0时,证明【答案】(1)当时,在单调递增;当时,则在单调递增,在单调递减;(2)详见解析【解析】试题分析:(1)先求函数导数,再根据导函数符号变化情况讨论单调性:当时,则在单调递增,当时,则在单调递增,在单调递减.(2)证明,即证,而,所以目标函数为,即 (),利用导数易得,即得证.【考点】利用导数求单调性,利用导数证不等式【名师点睛】利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性

6、,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.7.【2017山东,文20】(本小题满分13分)已知函数.,(I)当a=2时,求曲线在点处的切线方程;(II)设函数,讨论的单调性并判断有无极值,有极值时求出极值.【答案】(I),(2)(II)无极值;极大值为,极小值为;极大值为,极小值为.【解析】试题分析:(I)根据求出切线斜率,再用点斜式写出切线方程;(II)由,通过讨论确定单调性,再由单调性确定极值. (1)当时,当时,单调递增;当时,单调递减;当时,单调递增.所以,

7、当时,取到极大值,极大值是,当时,取到极小值,极小值是.(2)当时,当时,单调递增;所以,在上单调递增,无极大值也无极小值.(3)当时,当时,单调递增;当时,单调递减;当时,函数在和上单调递增,在上单调递减,函数既有极大值,又有极小值,极大值是,极小值是.【考点】导数的几何意义及导数的应用【名师点睛】(1)求函数f(x)极值的步骤:确定函数的定义域;求导数f(x);解方程f(x)0,求出函数定义域内的所有根;检验f(x)在f(x)0的根x0左右两侧值的符号,如果左正右负,那么f(x)在x0处取极大值,如果左负右正,那么f(x)在x0处取极小值(2)若函数yf(x)在区间(a,b)内有极值,那么

8、yf(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值.8.【2017天津,文19】设,.已知函数,.()求的单调区间;()已知函数和的图象在公共点(x0,y0)处有相同的切线,(i)求证:在处的导数等于0;(ii)若关于x的不等式在区间上恒成立,求b的取值范围.【答案】()递增区间为,递减区间为.(2)()在处的导数等于0.()的取值范围是.【解析】试题分析:()先求函数的导数 ,再根据,求得两个极值点的大小关系,再分析两侧的单调性,求得函数的单调区间;()()根据与有共同的切线,根据导数的几何意义建立方程,求得,得证;()将不等式转化为,再根据前两问可知是极大值点,由(I)知

9、在内单调递增,在内单调递减,从而在上恒成立,得,再根据导数求函数的取值范围.(II)(i)因为,由题意知,所以,解得.所以,在处的导数等于0.(ii)因为,由,可得.又因为,故为的极大值点,由(I)知.另一方面,由于,故,由(I)知在内单调递增,在内单调递减,故当时,在上恒成立,从而在上恒成立.由,得,.令,所以,令,解得(舍去),或.因为,故的值域为.所以,的取值范围是.【考点】1.导数的几何意义;2.导数求函数的单调区间;3.导数的综合应用.【名师点睛】本题本题考点为导数的应用,本题属于中等问题,第一问求导后要会分解因式,并且根据条件能判断两个极值点的大小关系,避免讨论,第二问导数的几何意

10、义,要注意切点是公共点,切点处的导数相等的条件,前两问比较容易入手,但第三问,需分析出 ,同时根据单调性判断函数的最值,涉及造函数解题较难,这一问思维巧妙,有选拔优秀学生的功能.9.【2017北京,文20】已知函数()求曲线在点处的切线方程;()求函数在区间上的最大值和最小值【答案】();()最大值1;最小值.【解析】()设,则.当时,所以在区间上单调递减.所以对任意有,即.所以函数在区间上单调递减.因此在区间上的最大值为,最小值为.【考点】1.导数的几何意义;2.利用导数求函数的最值.【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点是需要求二阶导数,因为不能判断

11、函数的单调性,所以需要再求一次导数,设 ,再求,一般这时就可求得函数的零点,或是恒成立,这样就能知道函数的单调性,根据单调性求最值,从而判断的单调性,求得最值.10.【2017江苏,20】 已知函数有极值,且导函数的极值点是的零点.(极值点是指函数取极值时对应的自变量的值) (1)求关于 的函数关系式,并写出定义域; (2)证明:; (3)若,这两个函数的所有极值之和不小于,求的取值范围.【答案】(1)(2)见解析(3)列表如下x+00+极大值极小值故的极值点是.从而,因此,定义域为.(3)由(1)知,的极值点是,且,.从而记,所有极值之和为,因为的极值为,所以,.因为,于是在上单调递减.因为,于是,故.因此a的取值范围为.【考点】利用导数研究函数单调性、极值及零点【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3