1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。4匀变速直线运动的速度与位移的关系速度与位移的关系如图所示是“歼15”战机在“辽宁舰”上起飞的画面,已知“歼15”战机的加速度为a,起飞速度为v。(1)如果“辽宁舰”静止在海上,应该如何确定飞机跑道的最小长度?(2)如果“辽宁舰”以v0匀速航行呢?(v与v0同向)提示:(1)根据v22ax,知飞机跑道的最小长度为x。(2)根据v2v2ax,知飞机跑道的最小长度为x。1推导:速度公式:vv0at位移公式:xv0tat2两方程消去时间t得:v2v2ax2公式:v2v2ax。(
2、1)公式v2v2ax适用于所有的直线运动。()(2)做匀加速直线运动的物体,位移越大,物体的末速度一定越大。()(3)确定公式v2v2ax中的四个物理量的数值时,选取的参考系应该是统一的。()(4)公式v2v2ax中四个物理量均是矢量,应用它解题时要注意各物理量的正、负值。()(5)刹车问题由于末速度为零,应用公式v2v2ax解题往往很方便。()知识点一关系式v2v2ax在匀变速直线运动中的应用1公式v2v2ax的条件和意义:(1)条件:速度与位移的关系v2v2ax表述的是匀变速直线运动的速度与位移的关系,仅适用于匀变速直线运动。(2)意义:公式反映了初速度v0、末速度v、加速度a、位移x之间
3、的关系,当其中三个量已知时,可求另一个未知量。2公式v2v2ax的矢量性:公式v2v2ax是矢量式,v0、v、a、x都是矢量,应用解题时一定要先设定正方向,取v0方向为正方向:(1)若加速运动,a取正值,减速运动,a取负值。(2)x0,位移的方向与初速度方向相同,x0则为减速到0,又返回到计时起点另一侧的位移。(3)v0,速度的方向与初速度方向相同,v0则为减速到0,又返回过程的速度。(1)汽车在平直公路上启动的过程可看作是匀加速直线运动,若已知汽车启动时的加速度大小和最大速度,如何计算汽车启动过程中的位移?提示:由运动学公式v2v2ax可知,当v00时,得v22ax,即x,可得到汽车启动过程
4、的位移(初速度为0的匀加速直线运动)。(2)汽车刹车时做匀减速直线运动,已知刹车时的速度和刹车距离,如何计算刹车时的加速度?提示:由运动学公式v2v2ax可知,当v0时,得v2ax,即a,可得到汽车刹车时的加速度(末速度为0的匀减速直线运动)。【典例】如图所示,竖井中的升降机可将地下深处的矿石快速运送到地面,某一竖井的深度为104 m,升降机运行的最大速度为8 m/s,加速度大小不超过1 m/s2。假定升降机到井口的速度为0,则将矿石从井底提升到井口的最短时间是()A13 sB16 sC21 sD26 s【解析】选C。升降机以最大加速度运行,且先匀加速至最大速度,后匀速运动,最后匀减速至速度为
5、零的过程时间最短。升降机先加速上升,加速上升距离为h132 m,加速时间为t18 s;减速距离h3h132 m,减速时间t3t18 s,故中间匀速阶段h240 m,匀速时间t25 s。所以tt1t2t38 s5 s8 s21 s,C正确。1(多选)一辆汽车正在做匀加速直线运动,计时之初,速度为4 m/s,运动48 m后速度增加到8 m/s,则()A这段运动的加速度是3.5 m/s2B这段运动所用时间是3.5 sC自开始计时起,3秒末的速度是5.5 m/sD从开始计时起,经过24 m处的速度是2 m/s【解析】选C、D。由题意知汽车运动的初速度为4 m/s、末速度为8 m/s、位移为48 m,则
6、由速度位移公式v2v2ax得加速度a m/s20.5 m/s2,选项A错误;这段运动所用时间t s8 s,选项B错误;3 s末的速度为:v3v1at14 m/s0.53 m/s5.5 m/s,故C正确;根据速度位移公式得:vv2ax1,解得:v4 m/s2 m/s,故D正确。2.将固定在水平地面上的斜面分为四等份,如图所示,ABBCCDDE,在斜面的底端A点有一个小滑块以初速度v0沿斜面向上运动,刚好能到达斜面顶端E点。则小滑块向上运动经过D点时的速度大小是()A B C D【解析】选D。将末速度为零的匀减速直线运动看成初速度为零的匀加速直线运动,则v02axEA、v02axED,又xEA4x
7、ED,解得:vD。故D项正确,A、B、C项错误。【加固训练】1一物体以某一初速度在水平面上做匀变速直线运动,其位移x与速度v的关系式为x90.25v2(各物理量均采用国际单位制单位),下列分析正确的是()A物体的加速度大小为3 m/s2B物体的初速度为9 m/sC第2秒内物体的位移为3 mD物体减速运动的时间为6 s【解析】选C。由x90.25v2 得4x36v2,变形得:v26222x ,则初速度为6 m/s,加速度为2 m/s2,故A、B错误;根据xv0tat2,可得第2秒内物体的位移为:x2(62222) m(61212) m3 m,故C正确;物体减速运动的时间为:t s3 s,故D错误
8、。2在一次交通事故中,交通警察测量出肇事车辆的刹车痕迹是30 m,该车辆的刹车加速度是15 m/s2,该路段限速为60 km/h,则该车()A超速B不超速C是否超速无法判断D行驶速度刚好是60 km/h【解析】选A。该车辆的末速度为零,由v2v2ax,可计算出初速度v0 m/s30 m/s108 km/h,该车严重超速,选项A正确。知识点二匀变速直线运动基本公式的比较1匀变速直线运动基本公式的比较:比较项目一般形式特殊形式(v00)不涉及的物理量速度公式vv0atvatx位移公式xv0tat2xat2v位移、速度关系式v2v2axv22axt平均速度求位移公式xtxta在匀变速直线运动的四个基
9、本公式中的任意两个都可以通过另外两个公式推导出来,四个公式中共包含v0、v、a、t、x五个物理量,因此五个物理量的关系是“知三求二”,即知道其中任意三个物理量,合理选择公式可求出另外任意两个物理量。2应用匀变速直线运动规律解题的一般步骤:(1)分析运动过程:认真审题,弄清题意和物体的运动过程,必要时要画出物体运动的过程示意图。(2)明确题目条件:明确研究过程的已知量和待求量,搞清题目的条件,要注意各量单位的统一。(3)规定正方向:一般取初速度v0的方向为正方向,从而确定已知量和未知量的正负。对于无法确定方向的未知量,可以先假设为正方向,待求解后,再根据正负确定所求物理量的方向。(4)列出方程:
10、根据物理量特点及求解需要选择适当的公式列方程。(5)计算判断:计算结果并判断其是否符合题意和实际情况。【典例】(一题多解)一滑雪运动员从85 m长的山坡上匀加速滑下,初速度是1.8 m/s,末速度是5.0 m/s,滑雪运动员通过这段斜坡需要多长时间?【解析】解法一:利用速度公式和位移公式求解由vv0at得5 m/s1.8 m/sat由xv0tat2得85 m1.8 m/stat2联立解得a0.128 m/s2,t25 s解法二:利用速度与位移的关系公式和速度公式求解由v2v2ax得a0.128 m/s2由vv0at得t25 s解法三:利用平均速度求位移的公式求解由xt得t s25 s答案:25
11、 s1(多选)做匀加速直线运动的物体,先后经过A 、B两点时的速度分别为v和7v,经历时间为t,则()A前半程速度增加3.5 vB经过A、B中间时刻的速度是4vC前时间内通过的位移比后 时间内通过的位移少1.5vtD通过前位移所需时间是通过后位移所需时间的2倍【解析】选B、C、D。设A、B两点中间位置的速度为v,则v2v22a;v22ax,联立解得v5v,故在前半程速度增加量为4v,A错误;做匀加速直线运动的物体,中间时刻瞬时速度等于平均速度,故v4v,B正确;物体做匀加速直线运动的加速度为a,根据xaT2可知,前时间内通过的位移比后时间内通过的位移少xa()21.5vt,故C正确;前位移所用
12、时间为t1,后位移所用时间为t2,得t12t2,故D正确。2.如图所示,斜面AB与水平面BC平滑连接,小球从A点由静止开始匀加速下滑至B点后,在BC平面上做匀减速直线运动至C点停止。已知斜面AB长8 m, 小球从A点开始2 s末到达B点,在BC面上匀减速运动的加速度大小为2 m/s2,求:(1)小球在斜面AB上运动的加速度大小。(2)从A点开始计时,3 s末小球的速度大小。(3)小球在水平面上从B点开始5 s内的位移大小。【解析】(1)在斜面AB上,由位移公式:x1a1t代入数据得:a14 m/s2(2)匀加速过程,由vBa1t1代入数据得:vB8 m/s当t3 s时,即已经在平面上运动的时间
13、为:t2tt11 s由vvBa2t2,a22 m/s2可得:v6 m/s(3)设小球在平面上运动的时间为t停,则有:t停4 s5 s小球4 s末即已停下,由vv2a2xBC代入数据得:xBC16 m答案:(1)4 m/s2(2)6 m/s(3)16 m【加固训练】(多选)如图所示,一平直公路上有三个路标o、m、n,且om3 m、mn5 m。一辆汽车在该路段做匀加速直线运动依次通过o、m、n三个路标,已知汽车在相邻两路标间运动时间相同,且速度增加量相同,均为v2 m/s,则下列说法中正确的是()A.汽车在om段的平均速度大小为2 m/sB汽车从m处运动到n处的时间为2 sC汽车经过o处时的速度大
14、小为2 m/sD汽车在该路段行驶的加速度大小为2 m/s2【解析】选C、D。设汽车经过o路标时速度为v,又由于汽车在相邻两路标间的速度增加量相同,均为v2 m/s,故通过m路标时速度为v2 m/s,通过n路标时速度为v4 m/s;由匀变速直线运动的速度与位移关系有:(v2 m/s)2v22axom,(v4 m/s)2(v2 m/s)22axmn,解得:v2 m/s,a2 m/s2;选项C、D正确;汽车在om段的平均速度大小为om m/s3 m/s,A错误;汽车在mn段的平均速度大小为mn m/s5 m/s,故汽车从m处运动到n处的时间为:t s1 s,故B错误。知识点三匀变速直线运动的几个规律
15、1初速度为零的匀加速直线运动的常用推论:(1)等分运动时间(以T为时间单位)。1T末、2T末、3T末瞬时速度之比:由vat可得:v1v2v31231T内、2T内、3T内位移之比:由xat2可得:x1x2x3149第一个T内、第二个T内、第三个T内的位移之比:由xx1,xx2x1,xx3x2可得:xxx135(2)等分位移(以x为单位)。通过x、2x、3x所用时间之比:由xat2可得t,所以t1t2t31通过第一个x、第二个x、第三个x所用时间之比:由tt1,tt2t1,tt3t2可得:ttt1(1)()x末、2x末、3x末的瞬时速度之比:由v22ax,可得v,所以v1v2v312中间位置的速度
16、与初、末速度的关系:(1)中间位置的速度公式:在匀变速直线运动中,某段位移x的初、末速度分别是v0和v,加速度为a,中间位置的速度为v,则v。(2)公式的推导:据速度与位移关系式,对前一半位移有v2v2a,对后一半位移有v2v22a,即v2vv2v2,所以v。【典例】2020年3月19日举办了世界女子冰壶锦标赛循环赛。如图甲所示为比赛中的运动员推出冰壶的动作。如图乙所示,一冰壶以速度v垂直进入两个相同的矩形区域做匀减速运动,且刚要离开第二个矩形区域时速度恰好为零。求:(1)冰壶依次进入每个矩形区域时的速度之比;(2)冰壶穿过每个矩形区域所用的时间之比。(冰壶可看成质点)【解析】(1)把冰壶的运
17、动看成逆向的初速度为零的匀加速直线运动,冰壶通过两矩形区域位移相等,由推论可知从右向左穿过矩形的速度之比为1,则冰壶实际运动依次进入每个矩形区域的速度之比为v1v21。(2)把冰壶看成从右向左做初速度为零的匀加速直线运动,由推论知通过每个矩形区域的时间之比为1(1);则冰壶实际穿过每个矩形区域所用的时间之比为t1t2(1)1。答案:(1)1(2)(1)1利用匀变速直线运动比例关系解题的技巧(1)对于末速度为零的匀减速直线运动,可把它看成逆向的初速度为零的匀加速直线运动,应用比例快速解题。(2)对于初速度和末速度均不为零的匀变速直线运动,可以掐段应用比例,如位移之比57911。1(多选)相同的三
18、块木块并排固定在水平面上,一颗子弹以速度v从左向右水平射入,若子弹在木块中做匀减速直线运动,且穿过第三块木块后速度恰好为零,则子弹依次射入每块木块时的速度之比和穿过每块木块所用时间之比为()Av1v2v3321Bv1v2v31Ct1t2t31Dt1t2t31【解析】选B、D。子弹匀减速穿过三块木块,末速度为零,根据逆向思维可将此过程看作从右向左的由静止开始的匀加速直线运动,且位移之比为123,由v22ax得,从右向左看时速度之比为1,即从左向右时速度之比为1,故A错误,B正确;从右向左看,子弹通过相等位移的时间之比为1(1)(),则从左向右看,子弹穿过每块木块所用时间之比为()(1)1,故C错
19、误,D正确。2(多选)(2021潍坊高一检测)有一辆汽车在一个沙尘暴天气中以20 m/s的速度匀速行驶,司机突然模糊看到正前方十字路口有一个老人跌倒在地,他立即刹车,刹车后加速度大小为5 m/s2,则()A经4 s汽车速度变为零B汽车刹车后6 s内的位移为40 mC汽车在第4 s末、第3 s末、第2 s末的速度之比为321D汽车第一个1 s内、第二个1 s内、第三个1 s内、第四个1 s内位移之比为1357【解析】选A、B。由vtv0at,t4 s,故A正确;由A知,汽车的刹车时间仅为4 s,刹车后6 s内的位移和4 s内的位移相同,由vv2ax,其中vt0,v020 m/s,a5 m/s2,
20、解出位移为40 m,故B正确;汽车做匀减速直线运动,在第4 s末,汽车速度已经为0,故C错误;汽车正向做匀减速直线运动,可看作反向做v00的匀加速直线运动,汽车在第一个1 s内、第二个1 s内、第三个1 s内、第四个1 s内位移之比为7531,故D错误。【加固训练】1一个物体从静止开始做匀加速直线运动,它在第1 s内与第2 s 内的位移之比为x1x2,在走完第1 m时与走完第2 m时的速度之比为v1v2。以下说法正确的是()Ax1x213,v1v212Bx1x213,v1v21Cx1x214,v1v212Dx1x214,v1v21【解析】选B。由x1x2x3xn135(2n1)知x1x213,
21、由xat2知t1t21,又vat可得v1v21,B正确。2“蛟龙号”是我国首台自主研制的作业型深海载人潜水器,它是目前世界上下潜能力最强的潜水器。假设某次海试活动中,“蛟龙号”完成海底任务后竖直上浮,从上浮速度为v时开始计时,此后“蛟龙号”匀减速上浮,经过时间t上浮到海面,速度恰好减为零,则“蛟龙号”在t0(t0t)时刻距离海平面的深度为()A BC Dvt0【解析】选C。“蛟龙号”上浮时的加速度大小为:a,根据逆向思维,可知“蛟龙号”在t0时刻距离海平面的深度为:ha(tt0)2(tt0)2;故C正确,A、B、D错误。【拓展例题】考查内容:复杂问题中运动学公式的选择【典例】如图所示,在成都天
22、府大道某处安装了一台500万像素的固定雷达测速仪,可以准确抓拍超速车辆以及测量运动车辆的加速度。一辆汽车正从A点迎面驶向测速仪B,若测速仪与汽车相距355 m,此时测速仪发出超声波,同时车由于紧急情况而急刹车,汽车运动到C处与超声波相遇,当测速仪接收到反射回来的超声波信号时,汽车恰好停止于D点,且此时汽车与测速仪相距335 m,忽略测速仪安装高度的影响,可简化为如图所示分析(已知超声波速度为340 m/s)。(1)求汽车刹车过程中的加速度a的大小。(2)此路段有80 km/h的限速标志,分析该汽车刹车前的行驶速度是否超速。【解析】(1)设超声波往返的时间为2t,汽车在2t时间内,刹车的位移为s
23、a(2t)220 m, 当超声波与车相遇后,车继续前进的时间为t,位移为s2at25 m,则超声波在2t内的路程为2(3355) m680 m,由声速为340 m/s,得t1 s,解得汽车的加速度a10 m/s2(2)车刹车过程中的位移s, 解得刹车前的速度v020 m/s72 km/h车速在规定范围内,不超速。答案:(1)10 m/s2(2)见解析研究表明,一般人的刹车反应时间,即图(a)中“反应过程”所用时间t00.4 s,但饮酒会导致反应时间延长,在某次试验中,志愿者少量饮酒后驾车在试验场的水平路面上匀速行驶,从发现情况到汽车停止,行驶距离L39 m。减速过程中汽车位移x与速度v的关系曲
24、线如图(b)所示,此过程可视为匀变速直线运动。探究:(1)减速过程汽车加速度的大小及所用时间;(2)饮酒使志愿者的反应时间比一般人增加了多少?【解析】(1)设刹车加速度大小为a,由题可知刹车初速度v072 km/h20 m/s,末速度vt0,位移x25 m,由0v2ax得a8 m/s2减速的时间t s2.5 s(2)反应时间内的位移为xLx14 m则反应时间为t s0.7 s则反应时间的增加量为t(0.70.4) s0.3 s答案:(1)8 m/s22.5 s(2)0.3 s某国道一辆货车侧翻,十几吨的小麦撒满了整个车道,顿时整个高速公路成了晒粮场!经调查,该货车行驶证核载1.5 t,实载10
25、 t,严重超载引起后轮爆胎,车辆失控侧翻。假设该车以54 km/h的速率匀速行驶,发现障碍物时司机刹车,货车立即做匀减速直线运动,加速度的大小为2.5 m/s2 (不超载时则为5 m/s2)。探究:(1)若前方无阻挡,问从刹车到停下来此货车在超载及不超载时分别前进多远?并分析超载的危害性。(2)若超载货车刹车时正前方25 m处停着总质量为1 t的轿车,两车将发生碰撞,求相撞时货车的速度大小。【解析】(1)设货车刹车距离为s,根据匀变速直线运动的速度与位移的关系式得s代入数据,得超载时s145 m不超载时s222.5 m。通过数据分析,超载时刹车距离远大于不超载时的距离,若超载可能会引发车祸。(
26、2)超载货车与轿车碰撞时,由vv2as知相撞时货车的速度vt m/s10 m/s。答案:(1)45 m22.5 m超载可能会引发车祸(2)10 m/s1南海某小岛只能建200 m长的军用飞机跑道,飞机在跑道上滑行的加速度为6 m/s2,起飞需要的最低速度为50 m/s。飞机在滑行前需要借助弹射系统获得一个初速度才能实现起飞,那么这个初速度应该为()A5 m/s B10 m/s C15 m/s D20 m/s【解析】选B。设弹射装置使飞机获得的初速度为v0,由v2v2ax得v0 m/s10 m/s,故B正确。2(多选)有一辆汽车在能见度较低的雾霾天气里以54 km/h的速度匀速行驶,司机突然看到
27、正前方有一辆静止的故障车,该司机刹车的反应时间为0.6 s,刹车后汽车匀减速前进,刹车过程中加速度大小为5 m/s2,最后停在故障车前1.5 m处,避免了一场事故,以下说法正确的是()A司机发现故障车后,汽车经过3 s停下B司机发现故障车后,汽车经过3.6 s停下C司机发现故障车时,汽车与故障车的距离为33 mD从司机发现故障车到停下来的过程,汽车的平均速度为7.5 m/s【解析】选B、C。54 km/h15 m/s,刹车后汽车做匀减速直线运动的时间:t s3 s,则汽车经过3.6 s停下来,故A错误,B正确;汽车与故障车的距离xv0t11.5 m(150.61.5 ) m33 m,故C正确;
28、从司机发现故障车到停下来的过程,汽车的平均速度: m/s m/s8.75 m/s,故D错误。3(多选)某物体沿着一条直线做匀变速直线运动,先后经过A、B两点。已知A、B两点间距离为6 m,物体运动经过A的速度为5 m/s,加速度大小为2 m/s2。则物体到达B点的速度大小等于()A1 m/s B3 m/s C5 m/s D7 m/s【解析】选A、D。物体做匀变速直线运动的加速度大小为2 m/s2,则加速度的方向可能向前也可能向后,即物体可能做匀加速直线运动也可能做匀减速直线运动,当a2 m/s2时,由v2v2ax得vB m/s7 m/s,a2 m/s2时,由v2v2ax得vB m/s1 m/s
29、,故A、D正确,B、C错误。4(2020全国卷)我国自主研制了运20重型运输机。飞机获得的升力大小F可用Fkv2描写,k为系数;v是飞机在平面跑道上的滑行速度,F与飞机所受重力相等时的v称为飞机的起飞离地速度。已知飞机质量为1.21105 kg时,起飞离地速度为66 m/s;装载货物后质量为1.69105 kg,装载货物前后起飞离地时的k值可视为不变。(1)求飞机装载货物后的起飞离地速度;(2)若该飞机装载货物后,从静止开始匀加速滑行1 521 m起飞离地,求飞机在滑行过程中加速度的大小和所用的时间。【解析】(1)设飞机装载货物前质量为m1,起飞离地速度为v1;装载货物后质量为m2,起飞离地速度为v2,重力加速度大小为g。飞机起飞离地应满足条件m1gkvm2gkv由式及题给条件得:v278 m/s(2)设飞机滑行距离为s,滑行过程中加速度大小为a,所用时间为t。由匀变速直线运动公式有v2asv2at联立式及题给条件得a2.0m/s2t39 s答案:(1)78 m/s(2)2.0m/s239 s关闭Word文档返回原板块