ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:50.62KB ,
资源ID:805583      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-805583-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【教学设计】《 二次根式》(北师大).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

【教学设计】《 二次根式》(北师大).docx

1、二次根式(第1课时)本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念。 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义。 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解。【知识与能力目标】了解二次根式的概念。【过程与方法目标】通过经历二次根式概念的发生过程,理解二次根式的含意。【情感态度价值观目标】培养学生观察、类

2、比、讨论、合作的思想。【教学重点】理解判断一个结论正确与否需要进行推理证明,理解并掌握应用实践进行证明、举反例验证、利用推理论证来验证某些结论是否正确的方法。【教学难点】利用二次根式的性质将二次根式化为最简二次根式。课前准备 学生每人准备好草稿纸、铅笔;教师准备课件。教学过程本节课设计了六个教学环节:第一环节:明晰概念;第二环节:探究性质;第三环节:知识巩固;第四环节:知识拓展;第五环节:课时小结;第一环节:明晰概念问题1 :,(其中b=24,c=25),上述式子有什么共同特征?答:都含有开方运算,并且被开方数都是非负数。介绍二次根式的概念。一般地,式子叫做二次根式。a叫做被开方数强调条件:。

3、问题2:二次根式怎样进行运算呢?答:这是我们本节课要解决的新问题。意图:通过问题,回顾旧知,为导出新知打好基础。第二环节:探究性质(一)内容:通过探究得出,具体过程如下:(1),; (2)用计算器计算:问题1:观察上面的结果你可得出什么结论?问题2:从你上面得出的结论,发现了什么规律?能用字母表示这个规律吗?问题3:其中的字母a,b有限制条件吗?意图:最终归纳出(a0,b0),(a0, b0)。说明:公式中字母a0,b0(或b0)这一条件是公式的一部分,不应忽略。第三环节:知识巩固 例1:化简(1);(2);(3)。 观察:化简以后的结果中的被开方数又有什么特征? 意图:由于现在还没有最简二次

4、根式的概念,学生实际上并不知道化简的方向,因此,这里以例题的形式呈现了有关结论。被开方数中都不含分母,也不含能开得尽的因数。一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式。 化简时,要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式。例2:化简:(1);(2);(3);(4);(5)。答案:(1);(2); (3)=;(4);(5)。问题:(1)你怎么发现45含有开得尽方的因数的?你怎么判断是最简二次根式的?(2)将二次根式化成最简二次根式时,你有哪些经验与体会,与同伴交流。说明:含有根号的数与一个不含根号的数相乘,一般把不含根号的数写在前面

5、,并省略去乘号。反思:以上化简过程有何规律呢?希望学生得出:根号里面的数有一部分移到了根号外面,具体来说是能开得尽方的因数,开方后写到了根号外面。从而明确:被开方数若有开得尽的因数,一般需要进行化简。第四环节:知识拓展说明:这部分根据学生的实际情况进行取舍,程度好的班级可选用,基础不好的班级舍去练习:1、下列平方根中, 已经简化的是( ) A、 B、 C、 D、2。判断下列各式是否成立。你认为成立的请在( )内打对号 ,不成立的打错号 。你判断完以后,发现了什么规律?请用含有n的式子将规律表示出来,并说明n的取值范围? 第五环节:课堂小结本节课主要内容:(1)掌握并会运用公式:(a0,b0),

6、(a0,b0)(2)理解本节课中用过的数学方法:类比,找规律,归纳总结。 教学反思本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系。根据新课标精神,对学生的评价不能过分要求技巧,应关注学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否依据算理正确地进行计算,能否确认结果的合理性等等,对于较复杂的实数运算,应关注学生是否会使用计算器进行运算。因此,注意对运算技能要求作恰当的定位,特别是在开始运算的第一课时,不要提高要求。本节课的教学设计中考虑了学生的层次不同,对知识深度和广度的要求也有所不同,因此,增加了知识拓展的内容,供层次高一些的学生及班级选用。

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1