ImageVerifierCode 换一换
格式:DOC , 页数:25 ,大小:3.13MB ,
资源ID:803549      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-803549-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(宁夏六盘山高级中学2020届高三下学期第二次模拟考试数学(理)试题 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

宁夏六盘山高级中学2020届高三下学期第二次模拟考试数学(理)试题 WORD版含答案.doc

1、绝密启用前宁夏六盘山高级中学2020届高三第二次模拟考试理科数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写在本试题相应的位置、涂清楚.2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题(本题共12小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的1.设是

2、虚数单位,则“”是“复数为纯虚数”的 A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2.集合,若则实数的值为 A. 0B. 1C. 2D. 43.等差数列的首项为1,公差不为,若,成等比数列,则数列的前项的和为 A. B. C. 3D. 84.设向量,则与垂直的向量可以是 ( )A.B. C. D. 5.用一平面去截体积为的球,所得截面的面积为,则球心到截面的距离为A. 2B. C. D. 16.的展开式中的系数为 ( )A. B. C. 40D. 807.下列命题中,错误命题是A. “若则的逆命题为真.B. 线性回归直线必过样本点的中心.C. 在平面直角

3、坐标系中到点和的距离的和为的点的轨迹为椭圆.D. 在锐角中,.8.元朝著名数学家朱世杰在四元玉鉴中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示若将“没了壶中酒”改为“剩余原壶中的酒量”,即输出值是输入值的,则输入的 A.B. CD. 9.已知圆的一条切线与双曲线没有公共点,则双曲线的离心率的取值范围是 ( )A.B.C.D. 10.将正方形沿对角线折成直二面角,有如下四个结论:;是等边三角形;所成的角为;所成的角为其中错误的结论是 ( )A. B. C. D. 11.函数有两个不同的零点,则实数的取值范围是

4、 ( )A.B. C. D. 12.在矩形中,,动点在以点为圆心且与相切的圆上若,则的最大值为 ( )A.B. C.D. 二、填空题:(本题共4小题,每小题5分,共20分)13.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立设为该群体的10位成员中使用移动支付的人数,则_14. 函数的部分图象如图所示,则的值是_15. 若数列满足,_.16.“解方程”有如下思路;设,则在上单调递减,且,故原方程有唯一解,类比上述解题思路,不等式的解集是_三、 解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答第22、23为选考题,考生根据

5、要求作答17.(本小题满分12分)在中,内角所对的边分别是,已知,.求的值;.求的值18. (本小题满分12分)某公司人数众多为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐为了解员工手机流量使用情况,按照男员工和女员工的比例分层抽样,得到名员工的月使用流量单位:的数据,其频率分布直方图如图所示.求的值,并估计这名员工月使用流量的平均值(同一组中的数据用中点值代表.若将月使用流量在以上(含)的员工称为“手机营销达人”,填写下面的列联表,能否有超过的把握认为“成为手机营销达人与员工的性别有关”;男员工女员工合计手机营销达人5非手机营销达人合计200参考公式及数据:,其中.若这名员工中有名男

6、员工每月使用流量在,从每月使用流量在的员工中随机抽取名进行问卷调查,记女员工的人数为, 求 的分布列和数学期望19.(本小题满分12分)如图所示,四棱锥中, ,,E为CD的中点.求证:;.求二面角的余弦值20. (本小题满分12分) 已知椭圆的一个焦点与抛物线的焦点重合,且离心率为.求椭圆的标准方程;.不过原点的直线与椭圆交于两点,若三直线的斜率成等比数列,求直线的斜率及的值21. (本小题满分12分)已知函数,且.求;.证明:存在唯一的极大值点,且选考题:共10分,请考生在22,、23题中任选一题作答.如果多做,则按所做的第一题计分22. 选考题(本小题满分10分) 在直角坐标系中,曲线的参

7、数方程,以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系.写出曲线的极坐标方程;.设点的极坐标为,过点的直线与曲线相交于两点,若,求的弦长23. 选考题(本小题满分10分) .设函数证明:;.若实数满足,求证:绝密启用前宁夏六盘山高级中学2020届高三第二次模拟考试理科数学试卷(答案)一、选择题(本题共12小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的1. 设是虚数单位,则“”是“复数为纯虚数”的 A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B解:,当为纯虚数时,且,若,则或,此时充分性不成立,若且,则成立,即

8、必要性成立,则“”是“复数为纯虚数”的必要不充分条件故选B2集合,若,则实数a的值为 A. 0B. 1C. 2D. 4【答案】D解:集合,因为,当时,此时满足条件,故选D3.等差数列的首项为1,公差不为若,成等比数列,则前6项的和为 A. B. C. 3D. 8【答案】A解:设等差数列的公差为d,由题意得,成等比数列,解得,前6项的和为故选A4.设向量,则与垂直的向量可以是A. B. C. D. 【答案】A解:向量,与垂直的向量可以是故选:A5.用一平面去截体积为的球,所得截面的面积为,则球心到截面的距离为 A. 2B. C. D. 1【答案】C解:球的体积,则球的半径是,截面的面积为,则截面

9、圆的半径是,所以球心到截面的距离为故选C6.的展开式中的系数为A. B. C. 40D. 80【答案】C解:的展开式的通项公式:令,解得令,解得x项:,y项:,的展开式中的系数为故选C7.下列命题中,错误命题是A. “若,则”的逆命题为真B. 线性回归直线必过样本点的中心C. 在平面直角坐标系中到点和的距离的和为的点的轨迹为椭圆D. 在锐角中,有【答案】C解:选项A:“若,则”的逆命题为:若,则,显然是真命题;选项B:线性回归直线必过样本点的中心,所以B正确;选项C:因为点和之间的距离为,所以在平面直角坐标系中到点和的距离的和为的点的轨迹为线段,所以C不正确选项D:在锐角中,有,则,所以,可得

10、,所以D正确;故选:C8.元朝著名数学家朱世杰在四元玉鉴中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示若将“没了壶中酒”改为“剩余原壶中的酒量”,即输出值是输入值的,则输入的 A. B. C. D. 【答案】C解:时,时,时,时,退出循环,此时解得,故选:C9.已知圆的一条切线与双曲线没有公共点,则双曲线的离心率的取值范围是 A. B. C. D. 【答案】B解:由题意,圆心到直线的距离,圆的一条切线与双曲线C:没有公共点,又,双曲线的离心率的取值范围故选B10.将正方形ABCD沿对角线BD折成直二面角,有

11、如下四个结论: ;是等边三角形;与平面BCD所成的角为;与CD所成的角为其中错误的结论是A. B. C. D. 【答案】C解:取BD的中点E,则,又,平面AEC,平面AEC,面AEC平面AEC,故正确;设正方形边长为a,则,为二面角所成平面角,又二面角为直二面角,则,为等边三角形,故正确;,则,又,平面BCD,平面BCD,平面BCD,为AB与面BCD所成的角,为,故不正确;以E为坐标原点,EC、ED、EA分别为x,y,z轴建立直角坐标系,则0,0,即AB与CD所成的角为,故正确故选C11.函数有两个不同的零点,则实数m的取值范围是 A. B. C. D. 【答案】B解:由题意可知,定义域为,令

12、,解得,函数有两个不同的零点,且当,单调递增;当,单调递减,即在上取得极大值,解得,故实数m的取值范围是故选B12.在矩形ABCD中,动点P在以点C为圆心且与BD相切的圆上若,则的最大值为A. 3B. C. D. 2【答案】A解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,则,动点P在以点C为圆心且与BD相切的圆上,设圆的半径为r,圆的方程为,设点P的坐标为,其中,故的最大值为3,故选A二、填空题:(本题共4小题,每小题5分,共20分)13.某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立设X为该群体的10位成员中使用移动支付的人数,则_【答案】

13、解:由题意,使用移动支付的人数X服从二项分布,则,解得或,又,即,化简得,解得,所以故答案为14.函数是常数, 的部分图象如图所示,则的值是_【答案】解:根据函数是常数,的部分图象,得,再根据五点法作图可得,则取,故,故答案为15. 若数列满足,则_ 【答案】解:因为,所以当时,两式相减得:,即,所以,由可知,所以故答案为16. “解方程”有如下思路;设,则在R上单调递减,且,故原方程有唯一解,类比上述解题思路,不等式的解集是_【答案】解:不等式变形为,;令,则;考察函数,知在R上为增函数,;不等式可化为,解得或;不等式的解集为:故答案为四、 解答题:共70分。解答应写出文字说明、证明过程或演

14、算步骤。第1721题为必考题,每个试题考生都必须作答第22、23为选考题,考生根据要求作答17.在中,内角A,B,C所对的边分别是a,b,已知,求b的值;求的值【答案】解:.在中,由正弦定理,可得,又,可得,又,所以由余弦定理可知:,即,可得.由,可得,所以,所以18.某公司人数众多为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐为了解员工手机流量使用情况,按照男员工和女员工的比例分层抽样,得到200名员工的月使用流量单位:的数据,其频率分布直方图如图所示.求a的值,并估计这200名员工月使用流量的平均值同一组中的数据用中点值代表;.若将月使用流量在800M以上含的员工称为“手机营销达人

15、”,填写下面的列联表,能否有超过的把握认为“成为手机营销达人与员工的性别有关”;男员工女员工合计手机营销达人5非手机营销达人合计200参考公式及数据:,其中k.若这200名员工中有2名男员工每月使用流量在,从每月使用流量在的员工中随机抽取3名进行问卷调查,记女员工的人数为求X的分布列和数学期望【答案】解:.由已知:,由已知得列联表如下:男员工女员工合计手机营销达人53540非手机营销达人45115160合计50150200由表中数据可得:的观测值 所以有超过的把握认为“手机营销达人与员工的性别有关”由频率分布直方图可得在的员工共有: 人, X的取值为1,2,3, , , , 所以分布列如下:X

16、123P所以19. 如图所示,四棱锥中,底面ABCD,E为CD的中点求证:平面PBC;求二面角的余弦值【答案】证明:,又,是CD的中点,是等边三角形,又平面PBC,平面PBC,平面PBC由可知,以A为原点,以AB,AE,AP为坐标轴建立空间直角坐标系如图:则0,0,1,3,2,0,1,3,2,设平面PBC的法向量为,平面PCD的法向量为,则,令得0,令得1,二面角的余弦值为20已知椭圆C:的一个焦点与抛物线的焦点重合,且离心率为.求椭圆C的标准方程;.不过原点的直线l与椭圆C交于M,N两点,若三直线OM、l、ON的斜率,k,成等比数列,求直线l的斜率及的值【答案】解:.依题意得,又,椭圆C的方

17、程为.设直线l的方程为, 由得,由题设知,此时,则,故直线l的斜率为21.已知函数,且.求a;.证明:存在唯一的极大值点,且【答案】解:因为,则等价于,求导可知则当时,即在上单调递减,所以当时,矛盾,故因为当时,当时,所以,又因为,所以,解得;另解:因为,所以等价于在时的最小值为,所以等价于在处是极小值,所以解得;证明:由可知,令,可得,记,则,令,解得:,所以在区间上单调递减,在上单调递增,所以,从而有解,即存在两根,且不妨设在上为正、在上为负、在上为正,所以必存在唯一极大值点,且,所以,由可知;由可知,所以在上单调递增,在上单调递减,所以;综上所述,存在唯一的极大值点,且22. 在直角坐标系xOy中,曲线C的参数方程为为参数以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系写出曲线C的极坐标方程;设M的极坐标为,过点M的直线l与曲线C相交于A,B两点,若,求AB的弦长【答案】解:曲线C的参数方程为为参数,曲线C的直角坐标方程为,曲线C的极坐标方程为,即曲线C的极坐标方程为;由点M的极坐标为,直角坐标为,设直线l的参数方程是为参数,曲线C的直角坐标方程是,联立,得,且,则,或,的弦长23.设函数证明:;若实数x,y,z满足,求证:【答案】证明:由,有, 又,当且仅当时取等号所以;实数x,y,z满足,由柯西不等式得:,当且仅当即,时取“”号,整理得:,

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3