ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:157.89KB ,
资源ID:801971      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-801971-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【备战2022】北京中国人民大学附中高考数学(题型预测 范例选讲)综合能力题选讲 第18讲 直线与二次曲线(含详解).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

【备战2022】北京中国人民大学附中高考数学(题型预测 范例选讲)综合能力题选讲 第18讲 直线与二次曲线(含详解).docx

1、直线与二次曲线题型预测直线与圆锥曲线的位置关系,是高考考查的重中之重主要涉及弦长、弦中点、对称、参量的取值范围、求曲线方程等问题解题中要充分重视韦达定理和判别式的应用解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”范例选讲例1已知双曲线G的中心在原点,它的渐近线与圆相切过点作斜率为的直线,使得和交于两点,和轴交于点,并且点在线段上,又满足()求双曲线的渐近线的方程;()求双曲线的方程;()椭圆的中心在原点,它的短轴是的实轴如果中垂直于的平行弦的中点的轨迹恰好是的渐近线截在内的部分,求椭圆的方程讲解:()设双曲线的渐近线的方程为:,则由渐近线与圆相切可得

2、:所以,双曲线的渐近线的方程为:()由()可设双曲线的方程为:把直线的方程代入双曲线方程,整理得则 () ,共线且在线段上, ,即:,整理得:将()代入上式可解得:所以,双曲线的方程为()由题可设椭圆的方程为:下面我们来求出中垂直于的平行弦中点的轨迹设弦的两个端点分别为,的中点为,则两式作差得:由于,所以,所以,垂直于的平行弦中点的轨迹为直线截在椭圆S内的部分又由题,这个轨迹恰好是的渐近线截在内的部分,所以,所以,椭圆S的方程为:点评:解决直线与圆锥曲线的问题时,把直线投影到坐标轴上(也即化线段的关系为横坐标(或纵坐标)之间的关系)是常用的简化问题的手段;有关弦中点的问题,常常用到“设而不求”

3、的方法;判别式和韦达定理是解决直线与圆锥曲线问题的常用工具)例2设抛物线过定点,且以直线为准线()求抛物线顶点的轨迹的方程;()若直线与轨迹交于不同的两点,且线段恰被直线平分,设弦MN的垂直平分线的方程为,试求的取值范围讲解:()设抛物线的顶点为,则其焦点为由抛物线的定义可知:所以,所以,抛物线顶点的轨迹的方程为: ()因为是弦MN的垂直平分线与y轴交点的纵坐标,由MN所唯一确定所以,要求的取值范围,还应该从直线与轨迹相交入手显然,直线与坐标轴不可能平行,所以,设直线的方程为,代入椭圆方程得:由于与轨迹交于不同的两点,所以,即()又线段恰被直线平分,所以,所以,代入()可解得:下面,只需找到与

4、的关系,即可求出的取值范围由于为弦MN的垂直平分线,故可考虑弦MN的中点在中,令,可解得:将点代入,可得:所以,从以上解题过程来看,求的取值范围,主要有两个关键步骤:一是寻求与其它参数之间的关系,二是构造一个有关参量的不等式从这两点出发,我们可以得到下面的另一种解法:解法二设弦MN的中点为,则由点为椭圆上的点,可知:两式相减得:又由于,代入上式得:BB又点在弦MN的垂直平分线上,所以,所以,由点在线段BB上(B、B为直线与椭圆的交点,如图),所以,也即:所以,点评:解决直线和圆锥曲线的位置关系问题时,对于消元后的一元二次方程,必须讨论二次项系数和判别式,有时借助图形的几何性质更为方便涉及弦中点问题,利用韦达定理或运用平方差法时(设而不求),必须以直线与圆锥曲线相交为前提,否则不宜用此法从构造不等式的角度来说,“将直线的方程与椭圆方程联立所得判别式大于0”与“弦MN的中点在椭圆内”是等价的

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1