ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:93.50KB ,
资源ID:801838      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-801838-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(山西省应县第一中学校(又:朔州外国语学校)2019-2020学年高二上学期第四次月考数学(理)试题 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

山西省应县第一中学校(又:朔州外国语学校)2019-2020学年高二上学期第四次月考数学(理)试题 WORD版含答案.doc

1、高 二 年 级 月 考 四 数 学 试 题(理) 2019.12时间:120分钟 满分:150分一选择题.(5分*12=60分)1. 倾斜角为120,在x轴上的截距为1的直线方程是()Axy10 Bxy0Cxy0 Dxy02若圆C的半径为1,圆心在第一象限,且与直线4x3y0和x轴都相切,则该圆的标准方程是()A(x2)2(y1)21 B(x2)2(y1)21C(x2)2(y1)21 D(x3)2(y1)213. 椭圆C的一个焦点为F1(0,1),并且经过点P(,1)的椭圆的标准方程为()A1 B1C1 D14已知椭圆C的中心为原点,焦点F1,F2在y轴上,离心率为,过点F2的直线交椭圆C于M

2、,N两点,且MNF1的周长为8,则椭圆C的焦距为()A4 B2C2 D25若双曲线1(a0,b0)的离心率为,则其渐近线的斜率为()A2 BC D6设F1,F2分别是椭圆C:1(ab0)的左、右焦点,M为直线y2b上的一点,F1MF2是等边三角形,则椭圆C的离心率为()A BC D7如图,椭圆1的左、右焦点分别为F1,F2,P点在椭圆上,若 |PF1|4,F1PF2120,则a的值为()A2 B3C4 D58过椭圆1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则OAB的面积为()A. B.C. D.9已知焦点在y轴上的双曲线C的中心是原点O,离心率等于,以双曲线C的一个焦点

3、为圆心,1为半径的圆与双曲线C的渐近线相切,则双曲线C的方程为()A1 By21Cx21 Dy2110已知直线l1:4x3y60和直线l2:x1,则抛物线y24x上一动点P到直线l1和直线l2的距离之和的最小值是()A B2C D311已知点P(x,y)是直线kxy40(k0)上一动点,PA,PB是圆C:x2y22y0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为()A3 B.C2 D212已知椭圆1(ab0)的左、右焦点分别为F1,F2,且|F1F2|2c,若椭圆上存在点M使得,则该椭圆离心率的取值范围为()A(0,1) B.C. D(1,1)二 填空题.13已知AB是

4、抛物线y22x的一条焦点弦,|AB|4,则AB中点C的横坐标是 .14过双曲线x21的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|_.15在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mxy2m10(mR)相切的所有圆中,半径最大的圆的标准方程为_16已知抛物线y24x的焦点为F,过焦点的直线与抛物线交于A,B两点,则当|AF|4|BF|取得最小值时,直线AB的倾斜角的正弦值为_三 解答题。17已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(,1),P2(,),求该椭圆的方程18在平面直角坐标系xOy中,圆C:x2y24x2ym0与直线xy20相切(

5、1)求圆C的方程;(2)若圆C上有两点M,N关于直线x2y0对称,且|MN|2,求直线MN的方程19已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,),点M(3,m)在双曲线上(1)求双曲线的方程;(2)求证:0;(3)求F1MF2的面积20已知圆C过定点F,且与直线x相切,圆心C的轨迹为E,曲线E与直线l:yk(x1)(kR)相交于A,B两点(1)求曲线E的方程;(2)当OAB的面积等于时,求k的值21已知椭圆C:1(ab0)过点,离心率为,左、右焦点分别为F1,F2,过F1的直线交椭圆于A,B两点(1)求椭圆C的方程;(2)当F2AB的面积为时,求直线的方程22已知

6、椭圆C:1(ab0)的离心率为,左焦点为F(1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点(1)求椭圆C的标准方程;(2)在y轴上,是否存在定点E,使恒为定值?若存在,求出E点的坐标和这个定值;若不存在,请说明理由高二月考四理数答案2019.121D 2A 3D 4C 5B 6C 7B 8B 9C 10B 11D 12D12.解析:选D在MF1F2中,而,.又M是椭圆1上一点,F1,F2是椭圆的焦点,|MF1|MF2|2a.由得,|MF1|,|MF2|.显然|MF2|MF1|,ac|MF2|ac,即ac0,e22e10,又0e1,1e0,x20,则x1x2,x1x21, 1.当

7、直线的斜率不存在时,易知|AF|BF|2,故1.设|AF|a,|BF|b,则1,所以|AF|4|BF|a4b(a4b)59,当且仅当a2b时取等号,故a4b的最小值为9,此时直线的斜率存在,且x112(x21), 联立得,x12,x2,k2,故直线AB的倾斜角的正弦值为.17 设椭圆方程为mx2ny21(m0,n0,且mn)因为椭圆经过P1,P2两点,所以P1,P2点坐标适合椭圆方程,则两式联立,解得所以所求椭圆方程为1.18 (1)将圆C:x2y24x2ym0化为(x2)2(y1)25m,因为圆C:x2y24x2ym0与直线xy20相切,所以圆心(2,1)到直线xy20的距离d2r,所以圆C

8、的方程为(x2)2(y1)24.(2)若圆C上有两点M,N关于直线x2y0对称,则可设直线MN的方程为 2xyc0,因为|MN|2,半径r2,所以圆心(2,1)到直线MN的距离为1,即1,所以c5,所以直线MN的方程为2xy50.19(1)因为e,则双曲线的实轴、虚轴相等所以可设双曲线方程为x2y2.因为双曲线过点(4,),所以1610,即6.所以双曲线方程为x2y26.(2)证明:设F1(2,0),F2(2,0),则(23,m),(23,m)所以(32)(32)m23m2,因为M点在双曲线上,所以9m26,即m230,所以0.(3)F1MF2的底边长|F1F2|4.由(2)知m.所以F1MF

9、2的高h|m|,所以SF1MF246.20(1)由题意,点C到定点F和直线x的距离相等,故点C的轨迹E的方程为y2x.(2)由方程组消去x后,整理得ky2yk0.设A(x1,y1),B(x2,y2),由根与系数的关系有y1y2,y1y21.设直线l与x轴交于点N,则N(1,0)所以SOABSOANSOBN|ON|y1|ON|y2|,|ON|y1y2|1 ,解得k.21(1)因为椭圆C:1(ab0)过点,所以1.又因为离心率为,所以,所以.解得a24,b23.所以椭圆C的方程为1.(2)当直线的倾斜角为时,A,B,SABF2|AB|F1F2|323.当直线的倾斜角不为时,设直线方程为yk(x1)

10、,代入1得(4k23)x28k2x4k2120.设A(x1,y1),B(x2,y2),则x1x2,x1x2,所以SABF2|y1y2|F1F2|k|k| ,所以17k4k2180,解得k21,所以k1,所以所求直线的方程为xy10或xy10.22(1)由已知可得解得a22,b21,所以椭圆C的标准方程为y21.(2)设过点D(0,2)且斜率为k的直线l的方程为ykx2,由消去y,整理得(12k2)x28kx60,设A(x1,y1),B(x2,y2),则x1x2,x1x2.又y1y2(kx12)(kx22)k2x1x22k(x1x2)4,y1y2(kx12)(kx22)k(x1x2)4.设存在点E(0,m),则(x1,my1),(x2,my2),所以x1x2m2m(y1y2)y1y2m2m.要使t(t为常数),只需t,从而(2m222t)k2m24m10t0,故解得m,从而t,故存在定点E,使恒为定值.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3