ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:192.68KB ,
资源ID:800381      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-800381-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【创新设计】(浙江专用)2022届高考数学总复习 第8篇 第7讲 立体几何中的向量方法(Ⅰ)证明平行与垂直限时训练 理.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

【创新设计】(浙江专用)2022届高考数学总复习 第8篇 第7讲 立体几何中的向量方法(Ⅰ)证明平行与垂直限时训练 理.docx

1、第7讲立体几何中的向量方法()证明平行与垂直分层A级基础达标演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1若直线l1,l2的方向向量分别为a(2,4,4),b(6,9,6),则()Al1l2 Bl1l2Cl1与l2相交但不垂直 D以上均不正确答案B2若直线l的方向向量为a,平面的法向量为n,能使l的是 ()Aa(1,0,0),n(2,0,0)Ba(1,3,5),n(1,0,1)Ca(0,2,1),n(1,0,1)Da(1,1,3),n(0,3,1)解析若l,则an0.而A中an2,B中an156,C中an1,只有D选项中an330.答案D3平面经过三点A(1,0,1),

2、B(1,1,2),C(2,1,0),则下列向量中与平面的法向量不垂直的是()A. B(6,2,2)C(4,2,2) D(1,1,4)解析设平面的法向量为n,则n,n,n,所有与(或、)平行的向量或可用与线性表示的向量都与n垂直,故选D.答案D4(2022全国卷)已知正四棱柱ABCDA1B1C1D1中,AB2,CC12,E为CC1的中点,则直线AC1与平面BED的距离为()A2 B. C. D1解析连接AC,交BD于点O,连接EO,过点O作OHAC1于点H,因为AB2,所以AC2,又CC12,所以OHsin 451.答案D二、填空题(每小题5分,共10分)5若向量a(1,2),b(2,1,2)且

3、a与b的夹角的余弦值为,则_.解析由已知得,83(6),解得2或.答案2或6在四面体PABC中,PA,PB,PC两两垂直,设PAPBPCa,则点P到平面ABC的距离为_解析根据题意,可建立如图所示的空间直角坐标系Pxyz,则P(0,0,0),A(a,0,0),B(0,a,0),C(0,0,a)过点P作PH平面ABC,交平面ABC于点H,则PH的长即为点P到平面ABC的距离PAPBPC,H为ABC的外心又ABC为正三角形,H为ABC的重心,可得H点的坐标为.PH a.点P到平面ABC的距离为a.答案a三、解答题(共25分)7(12分)如图所示,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面

4、边长的倍,P为侧棱SD上的点(1)求证:ACSD.(2)若SD平面PAC,则侧棱SC上是否存在一点E,使得BE平面PAC.若存在,求SEEC的值;若不存在,试说明理由(1)证明连接BD,设AC交BD于O,则ACBD.由题意知SO平面ABCD.以O为坐标原点,分别为x轴、y轴、z轴正方向,建立空间直角坐标系如图设底面边长为a,则高SOa,于是S,D,B,C,则0.故OCSD.从而ACSD.(2)解棱SC上存在一点E使BE平面PAC.理由如下:由已知条件知是平面PAC的一个法向量,且,.设t,则t,而0t.即当SEEC21时,.而BE不在平面PAC内,故BE平面PAC.8(13分)如图所示,已知正

5、方形ABCD和矩形ACEF所在的平面互相垂直,AB,AF1,M是线段EF的中点求证:(1)AM平面BDE;(2)AM平面BDF.证明(1)建立如图所示的空间直角坐标系,设ACBDN,连接NE.则N,E(0,0,1),A(,0),M.且NE与AM不共线NEAM.又NE平面BDE,AM平面BDE,AM平面BDE.(2)由(1)知,D(,0,0),F(,1),(0,1)0,AMDF.同理AMBF.又DFBFF,AM平面BDF.分层B级创新能力提升1已知(1,5,2),(3,1,z),若,(x1,y,3),且BP平面ABC,则实数x,y,z分别为()A.,4 B.,4C.,2,4 D4,15解析,0,

6、即352z0,得z4,又BP平面ABC,BPAB,BPBC,(3,1,4),则解得答案B2正方体ABCDA1B1C1D1的棱长为a,点M在AC1上且,N为B1B的中点,则|为()A.a B.a C.a D.a解析以D为原点建立如图所示的空间直角坐标系Dxyz,则A(a,0,0),C1(0,a,a),N.设M(x,y,z),点M在AC1上且,(xa,y,z)(x,ay,az)xa,y,z.得M,| a.答案A3如图,正方体ABCDA1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E平面ABF,则CE与DF的和的值为_解析以D1A1、D1C1、D1D分别为x,y,z轴建立空间直

7、角坐标系,设CEx,DFy,则易知E(x,1,1),B1(1,1,0),(x1,0,1),又F(0,0,1y),B(1,1,1),(1,1,y),由于ABB1E,故若B1E平面ABF,只需(1,1,y)(x1,0,1)0xy1.答案14(2022淮南模拟)在正方体ABCDA1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分别为AB,BC的中点,点Q为平面ABCD内一点,线段D1Q与OP互相平分,则满足的实数的有_个解析建立如图的坐标系,设正方体的边长为2,则P(x,y,2),O(1,1,0),OP的中点坐标为,又知D1(0,0,2),Q(x1,y1

8、,0),而Q在MN上,xQyQ3,xy1,即点P坐标满足xy1.有2个符合题意的点P,即对应有2个.答案25在四棱锥PABCD中,PD底面ABCD,底面ABCD为正方形,PDDC,E、F分别是AB、PB的中点(1)求证:EFCD;(2)在平面PAD内求一点G,使GF平面PCB,并证明你的结论(1)证明如图,以DA、DC、DP所在直线分别为x轴,y轴、z轴建立空间直角坐标系,设ADa,则D(0,0,0)、A(a,0,0)、B(a,a,0)、C(0,a,0)、E、P(0,0,a)、F.,(0,a,0)0,即EFCD.(2)解设G(x,0,z),则,若使GF平面PCB,则由(a,0,0)a0,得x;

9、由(0,a,a)2a0,得z0.G点坐标为,即G点为AD的中点6.(2022湖南卷)如图,在四棱锥PABCD中,PA平面ABCD,AB4,BC3,AD5,DABABC90,E是CD的中点(1)证明:CD平面PAE;(2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥PABCD的体积解如图,以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系设PAh,则相关各点的坐标为:A(0,0,0),B(4,0,0),C(4,3,0),D(0,5,0),E(2,4,0),P(0,0,h)(1)证明易知(4,2,0),(2,4,0),(0,0,h)因为8800,0,所以CDAE,CDAP.而AP,AE是平面PAE内的两条相交直线,所以CD平面PAE.(2)由题设和(1)知,分别是平面PAE,平面ABCD的法向量而PB与平面PAE所成的角和PB与平面ABCD所成的角相等,所以|cos,|cos,|,即.由(1)知,(4,2,0),(0,0,h),又(4,0,h),故.解得h.又梯形ABCD的面积为S(53)416,所以四棱锥PABCD的体积为VSPA16.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1