ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:467KB ,
资源ID:797072      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-797072-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2014版高中数学复习方略课时提升作业:8.7双 曲 线(北师大版 理 通用).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2014版高中数学复习方略课时提升作业:8.7双 曲 线(北师大版 理 通用).doc

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(五十七)一、选择题1.(2013南昌模拟)已知双曲线mx2-ny2=1(m0,n0)的离心率为2,则椭圆mx2+ny2=1的离心率为()(A)(B)(C)(D)2.双曲线-y2=1(n1)的左、右两个焦点为F1,F2,P在双曲线上,且满足|PF1|+|PF2|=2,则PF1F2的面积为()(A)(B)1(C)2(D)43.(2013汉中模拟)设双曲线-=1(a0)的渐近线方程为3x2y=0,则a的值为()(A)4(B)3(C)2(D)14.已知双曲线-=1(

2、a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()(A)-=1(B)-=1(C)-=1(D)-=15.设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()(A)(B)(C)(D)6.(2012新课标全国卷)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为()(A)(B)2(C)4(D)87.(2013抚州模拟)设F1,F2分别为双曲线-=1(a0,b0)的左、右焦点.若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且

3、F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为()(A)3x4y=0(B)3x5y=0(C)4x3y=0(D)5x4y=08.(能力挑战题)设F1,F2分别是双曲线x2-=1的左、右焦点,若点P在双曲线上,且=0,则|+|=()(A)(B)2(C)(D)2二、填空题9.(2013西安模拟)若椭圆+=1(ab0)的离心率为,则双曲线-=1的离心率为.10.(2012天津高考)已知双曲线C1:-=1(a0,b0)与双曲线C2:-=1有相同的渐近线,且C1的右焦点为F(,0),则a=,b=.11.(能力挑战题)过双曲线的右焦点F作实轴所在直线的垂线,交双曲线于A,B两点,设双曲线

4、的左顶点为M,若点M在以AB为直径的圆的内部,则此双曲线的离心率e的取值范围为.三、解答题12.(2013井冈山模拟)已知A,B,P是双曲线-=1上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积kPAkPB=,求双曲线的离心率.13.(2013马鞍山模拟)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点P(4,-).(1)求双曲线的方程.(2)若点M(3,m)在双曲线上,求证:=0.(3)求F1MF2的面积.14.P(x0,y0)(x0a)是双曲线E:-=1(a0,b0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离

5、心率.(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足=+,求的值.答案解析1.【解析】选B.由已知双曲线的离心率为2,得:=2,解得:m=3n,又m0,n0,mn,即,故由椭圆mx2+ny2=1得+=1.所求椭圆的离心率为:e=.【误区警示】本题极易造成误选而失分,根本原因是由于将椭圆mx2+ny2=1焦点所在位置弄错,从而把a求错造成.2.【解析】选B.不妨设点P在双曲线的右支上,则|PF1|-|PF2|=2,又|PF1|+|PF2|=2,|PF1|=+,|PF2|=-,又c=,|PF1|2+|PF2|2=|F1F2|2,F1PF2=90,

6、=|PF1|PF2|=1.3.【解析】选C.双曲线-=1的渐近线方程为3xay=0与已知方程比较系数得a=2.4.【解析】选B.由题意可知解得所以双曲线的方程为-=1.5.【解析】选D.因为焦点在x轴上与焦点在y轴上的离心率一样,所以不妨设双曲线方程为-=1(a0,b0),则双曲线的渐近线的斜率k=,一个焦点坐标为F(c,0),一个虚轴的端点为B(0,b),所以kFB=-,又因为直线FB与双曲线的一条渐近线垂直,所以kkFB=(-)=-1(k=-显然不符合),即b2=ac,c2-a2=ac,所以,c2-a2-ac=0,即e2-e-1=0,解得e=(负值舍去).【变式备选】双曲线-=1(a0,b

7、0)的离心率为2,则的最小值为()(A)(B)(C)2(D)1【解析】选A.因为双曲线的离心率为2,所以=2,即c=2a,c2=4a2;又因为c2=a2+b2,所以a2+b2=4a2,即b=a,因此=a+2=,当且仅当a=,即a=时等号成立.故的最小值为.6.【解析】选C.不妨设点A的纵坐标大于零.设C:-=1(a0),抛物线y2=16x的准线为x=-4,联立得方程组解得:A(-4,),B(-4,-),|AB|=2=4,解得a=2,2a=4.C的实轴长为4.7.【解析】选C.设PF1的中点为M,因为|PF2|=|F1F2|,所以F2MPF1,因为|F2M|=2a,在直角三角形F1F2M中,|F

8、1M|=2b,故|PF1|=4b,根据双曲线的定义得4b-2c=2a,即2b-c=a,因为c2=a2+b2,所以(2b-a)2=a2+b2,即3b2-4ab=0,即3b=4a,故双曲线的渐近线方程是y=x,即4x3y=0.8. 【解析】选B.如图,由=0可得,又由向量加法的平行四边形法则可知PF1QF2为矩形,因为矩形的对角线相等,故有|+|=|=2c=2.9.【解析】由已知椭圆离心率为,所以有=,得()2=,而双曲线的离心率为=.答案:10.【解析】由题意可得解得:a=1,b=2.答案:1211.【思路点拨】设出双曲线方程,表示出点F,A,B的坐标,由点M在圆内部列不等式求解.【解析】设双曲

9、线的方程为-=1(a0,b0),右焦点F坐标为F(c,0),令A(c,),B(c,-),所以以AB为直径的圆的方程为(x-c)2+y2=.又点M(-a,0)在圆的内部,所以有(-a-c)2+0,即a+ca2+ac0(e=),解得:e2或e1,e2.答案:(2,+)12.【解析】设A(m,n),P(x0,y0),则B(-m,-n),A,B,P在双曲线上,-=1,(1)-=1,(2)(2)-(1)得:=,kPAkPB=e=.13.【解析】(1)e=,可设双曲线方程为x2-y2=(0).过点P(4,-),16-10=,即=6.双曲线方程为x2-y2=6.(2)方法一:由(1)可知,双曲线中a=b=,

10、c=2,F1(-2,0),F2(2,0).=,=,=-.点M(3,m)在双曲线上,9-m2=6,m2=3.故=-1,MF1MF2.=0.方法二:=(-3-2,-m),=(2-3,-m),=(3+2)(3-2)+m2=-3+m2.M(3,m)在双曲线上,9-m2=6,即m2-3=0.=0.(3)F1MF2的底|F1F2|=4,F1MF2的边F1F2上的高h=|m|=,=6.14.【思路点拨】(1)代入P点坐标,利用斜率之积为列方程求解.(2)联立方程,设出A,B,的坐标,代入=+求解.【解析】(1)由点P(x0,y0)(x0a)在双曲线-=1上,有-=1.由题意又有=,可得a2=5b2,c2=a2+b2=6b2,则e=.(2)联立方程得得4x2-10cx+35b2=0,设A(x1,y1),B(x2,y2),则设=(x3,y3),=+,即又C为双曲线E上一点,即-5=5b2,有(x1+x2)2-5(y1+y2)2=5b2,化简得:2(-5)+(-5)+2(x1x2-5y1y2)=5b2,又A(x1,y1),B(x2,y2)在双曲线E上,所以-5=5b2,-5=5b2.又x1x2-5y1y2=x1x2-5(x1-c)(x2-c)=-4x1x2+5c(x1+x2)-5c2=10b2,得:2+4=0,解出=0或=-4.关闭Word文档返回原板块。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3