ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:348.50KB ,
资源ID:79242      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-79242-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《创新设计-课堂讲义》2015-2016学年高中数学(人教A版必修二)课时作业:第1章 空间几何体 习题课 .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《创新设计-课堂讲义》2015-2016学年高中数学(人教A版必修二)课时作业:第1章 空间几何体 习题课 .doc

1、习题课空间几何体【课时目标】熟练掌握空间几何体的结构,以三视图为载体,进一步巩固几何体的体积与表面积计算1圆柱、圆锥、圆台的侧面展开图及侧面面积公式2空间几何体的表面积和体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积S侧2S底V_锥体(棱锥和圆锥)S表面积S侧S底V_台体(棱台和圆台)S表面积S侧S上S下V_球S_VR3一、选择题1圆柱的轴截面是正方形,面积是S,则它的侧面积是()AS BS C2S D4S2若某空间几何体的三视图如图所示,则该几何体的体积是()A B C1 D23如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是()4一个几何体的三

2、视图如图,该几何体的表面积为()A280 B292 C360 D3725棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为()A B C D6已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是,则这个三棱柱的体积是()A96 B16 C24 D48二、填空题7一个几何体的三视图如图所示,则这个几何体的体积为_8若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是_cm39圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是_cm三、解答题10如下的三个图中,上面的是一个

3、长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm)(1)按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;11如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用96米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面)(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到001平方米);(2)若要制作一个如图放置的、底面半径为03米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素)能力提升12设某几何体的三视图如下(尺寸的长度单位为m)则该几何体的体积为_m313如图所示,在

4、直三棱柱ABCA1B1C1中,底面为直角三角形,ACB90,AC6,BCCC1 ,P是BC1上一动点,则CPPA1的最小值是_1空间几何体是高考必考的知识点之一,重点考查空间几何体的三视图和体积、表面积的计算,尤其是给定三视图求空间几何体的体积或表面积,更是近几年高考的热点其中组合体的体积和表面积有加强的趋势,但难度也不会太大,解决这类问题的关键是充分发挥空间想象能力,由三视图得到正确立体图,进行准确计算2“展”是化折为直,化曲为平,把立体几何问题转化为平面几何问题,多用于研究线面关系,求多面体和旋转体表面的两点间的距离最值等等习题课空间几何体 答案知识梳理12rlrl(rr)l2ShSh(S

5、上S下)h4R2作业设计1B设圆柱底面半径为r,则S4r2,S侧2r2r4r2S2C由三视图可知,该空间几何体是底面为直角三角形的直三棱柱,三棱柱的底面直角三角形的直角边长分别为1和,三棱柱的高为,所以该几何体的体积V113C当俯视图为A中正方形时,几何体为边长为1的正方体,体积为1;当俯视图为B中圆时,几何体为底面半径为,高为1的圆柱,体积为;当俯视图为C中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为;当俯视图为D中扇形时,几何体为圆柱的,且体积为4C由三视图可知该几何体是由下面一个长方体,上面一个长方体组合而成的几何体下面长方体的表面积为810228210

6、22232,上面长方体的表面积为862282262152,又长方体表面积重叠一部分,几何体的表面积为2321522623605C连接正方体各面中心构成的八面体由两个棱长为a的正四棱锥组成,正四棱锥的高为,则八面体的体积为V2(a)26D由R3,得R2正三棱柱的高h4设其底面边长为a,则a2,a4V(4)24487解析该几何体是上面是底面边长为2的正四棱锥,下面是底面边长为1、高为2的正四棱柱的组合体,其体积为V1122218144解析此几何体为正四棱台与正四棱柱的组合体,而V正四棱台(8242)3112,V正四棱柱44232,故V1123214494解析设球的半径为r cm,则r28r33r2

7、6r解得r410解(1)如图所示(2)所求多面体体积VV长方体V正三棱锥4462 (cm3)11解由题意可知矩形的高即圆柱的母线长为122r,塑料片面积Sr22r(122r)r224r4r23r224r3(r208r)3(r04)2048当r04时,S有最大值048,约为151平方米(2)若灯笼底面半径为03米,则高为1220306(米)制作灯笼的三视图如图124解析由三视图可知原几何体是一个三棱锥,且三棱锥的高为2,底面三角形的一边长为4,且该边上的高为3,故所求三棱锥的体积为V3424 m3135 解析将BCC1沿BC1线折到面A1C1B上,如图连接A1C即为CPPA1的最小值,过点C作CDC1D于D点,BCC1为等腰直角三角形,CD1,C1D1,A1DA1C1C1D7A1C5

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3