1、习题课空间几何体【课时目标】熟练掌握空间几何体的结构,以三视图为载体,进一步巩固几何体的体积与表面积计算1圆柱、圆锥、圆台的侧面展开图及侧面面积公式2空间几何体的表面积和体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积S侧2S底V_锥体(棱锥和圆锥)S表面积S侧S底V_台体(棱台和圆台)S表面积S侧S上S下V_球S_VR3一、选择题1圆柱的轴截面是正方形,面积是S,则它的侧面积是()AS BS C2S D4S2若某空间几何体的三视图如图所示,则该几何体的体积是()A B C1 D23如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是()4一个几何体的三
2、视图如图,该几何体的表面积为()A280 B292 C360 D3725棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为()A B C D6已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是,则这个三棱柱的体积是()A96 B16 C24 D48二、填空题7一个几何体的三视图如图所示,则这个几何体的体积为_8若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是_cm39圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是_cm三、解答题10如下的三个图中,上面的是一个
3、长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm)(1)按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;11如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用96米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面)(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到001平方米);(2)若要制作一个如图放置的、底面半径为03米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素)能力提升12设某几何体的三视图如下(尺寸的长度单位为m)则该几何体的体积为_m313如图所示,在
4、直三棱柱ABCA1B1C1中,底面为直角三角形,ACB90,AC6,BCCC1 ,P是BC1上一动点,则CPPA1的最小值是_1空间几何体是高考必考的知识点之一,重点考查空间几何体的三视图和体积、表面积的计算,尤其是给定三视图求空间几何体的体积或表面积,更是近几年高考的热点其中组合体的体积和表面积有加强的趋势,但难度也不会太大,解决这类问题的关键是充分发挥空间想象能力,由三视图得到正确立体图,进行准确计算2“展”是化折为直,化曲为平,把立体几何问题转化为平面几何问题,多用于研究线面关系,求多面体和旋转体表面的两点间的距离最值等等习题课空间几何体 答案知识梳理12rlrl(rr)l2ShSh(S
5、上S下)h4R2作业设计1B设圆柱底面半径为r,则S4r2,S侧2r2r4r2S2C由三视图可知,该空间几何体是底面为直角三角形的直三棱柱,三棱柱的底面直角三角形的直角边长分别为1和,三棱柱的高为,所以该几何体的体积V113C当俯视图为A中正方形时,几何体为边长为1的正方体,体积为1;当俯视图为B中圆时,几何体为底面半径为,高为1的圆柱,体积为;当俯视图为C中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为;当俯视图为D中扇形时,几何体为圆柱的,且体积为4C由三视图可知该几何体是由下面一个长方体,上面一个长方体组合而成的几何体下面长方体的表面积为810228210
6、22232,上面长方体的表面积为862282262152,又长方体表面积重叠一部分,几何体的表面积为2321522623605C连接正方体各面中心构成的八面体由两个棱长为a的正四棱锥组成,正四棱锥的高为,则八面体的体积为V2(a)26D由R3,得R2正三棱柱的高h4设其底面边长为a,则a2,a4V(4)24487解析该几何体是上面是底面边长为2的正四棱锥,下面是底面边长为1、高为2的正四棱柱的组合体,其体积为V1122218144解析此几何体为正四棱台与正四棱柱的组合体,而V正四棱台(8242)3112,V正四棱柱44232,故V1123214494解析设球的半径为r cm,则r28r33r2
7、6r解得r410解(1)如图所示(2)所求多面体体积VV长方体V正三棱锥4462 (cm3)11解由题意可知矩形的高即圆柱的母线长为122r,塑料片面积Sr22r(122r)r224r4r23r224r3(r208r)3(r04)2048当r04时,S有最大值048,约为151平方米(2)若灯笼底面半径为03米,则高为1220306(米)制作灯笼的三视图如图124解析由三视图可知原几何体是一个三棱锥,且三棱锥的高为2,底面三角形的一边长为4,且该边上的高为3,故所求三棱锥的体积为V3424 m3135 解析将BCC1沿BC1线折到面A1C1B上,如图连接A1C即为CPPA1的最小值,过点C作CDC1D于D点,BCC1为等腰直角三角形,CD1,C1D1,A1DA1C1C1D7A1C5