ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:138.50KB ,
资源ID:792209      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-792209-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021秋八年级数学上册 第十二章 全等三角形12.2 三角形全等的判定 1利用三边判定三角形全等教学设计(新版)新人教版.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021秋八年级数学上册 第十二章 全等三角形12.2 三角形全等的判定 1利用三边判定三角形全等教学设计(新版)新人教版.doc

1、12.2.1 利用三边判定三角形全等【知识与技能】掌握三角形全等的“边边边”条件,了解三角形的稳定性.【过程与方法】经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.【情感态度】通过对问题的共同探讨,培养学生的协作精神.【教学重点】掌握三角形全等的“边边边”条件.【教学难点】三角形全等条件的探索过程.一、情境导入,初步认识1.复习全等三角形的性质,归纳得出:三条边对应相等,三个角对应相等的两个三角形全等.2.提出问题:两个三角形全等,一定需要六个条件吗?如果只满足其中部分条件的两个三角形,是否也能全等呢?指导学生探究下列两个问题:探究1 先任意画出一个ABC.再画一个ABC,

2、使ABC与ABC满足六个条件中的一个(一边或一角分别相等)或两个(两边、一边一角或两角分别相等).你画出的ABC与ABC一定全等吗?通过画图可以发现,满足六个条件中的一个或两个,ABC与ABC不一定全等.探究2 先任意画出一个ABC.再画一个ABC,使AB=AB,BC=BC,CA=CA.把画好的ABC剪下来,放到ABC上,它们全等吗?在充分的观察、讨论、交流后,引导学生总结出:三边对应相等的两个三角形全等,即“边边边”公理,或写成“SSS”.【教学说明】利用提出的问题激发学生的探究发现兴趣,教师应根据学生观察发现的结论,无论对与错,多给予肯定与鼓励,并引导学生最终得出正确的结果.教师讲课前,先

3、让学生完成“自主预习”.二、思考探究,获取新知教师操作演示:由三根木条钉成的一个三角形的框架,大小和形状固定不变,由此归纳出:(1)三边对应相等的两个三角形全等;(2)三角形具有稳定性.例1 如图,ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证:ABDACD.(由学生思考后表述思路,教师指导并展示证题过程.)证明:D是BC中点,BD=CD.在ABD和ACD中, ABDACD(SSS).例2如图,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AD=FB.要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE外,还应有什么条件?怎样才能得到这个条件?答

4、:还需要AB=FD,这个条件可由AD=FB得到.证明:AD=FB,AD+BD=BD+FB,即AB=FD.在ABC和FDE中,ABCFDE(SSS)【教学说明】由以上两例,应让学生掌握:1.证明题的基本格式,做到每一步推理有根有据,并正确用几何语言表述出来.2.积累分析问题的经验,逐步学会怎样探寻未知条件,为证题提供足够的依据.三、运用新知,深化理解1.如图,E是AC上一点,AB=AD,BE=DE,可应用“SSS”证明三角形全等的是( )A.ABCADCB.ABEADEC.CBECDED.以上选项都对2.如图,ABC中,AD=DE,AB=BE,A=100,则DEC= 度.3.如图,AB=AC,A

5、D=AE,BE=CD.求证:ABDACE.证明:在ABD和ACE中,ABDACE(SSS)上述的证明过程正确吗?若不正确,请写出正确的推理过程.4.如图,已知A,F,C,D在同一直线上,AB=DE,BC=EF,AF=DC,求证:BCEF.【教学说明】学生在教师指导下完成上述习题时,教师应提醒学生注意:1.善于利用题中已知条件和隐含条件(如题3的公共线段DE后),联想“SSS”证得三角形全等.2.要灵活地结合三角形全等性质,以证出线段相等或角相等,进而推得两线平行、或互相垂直等位置关系.3.熟悉证题格式.完成上述题目后,引导学生做本课时创优作业“课堂自主演练”中的题.【答案】1.B 2.803.

6、不正确.其证明过程如下:BE=CD,BE-DE=CD-DE,即BD=CE.在ABD和ACE中,ABDACE(SSS).4.先证ABCDEF(SSS),BCA=EFD,BCEF.四、师生互动,课堂小结教师引导学生反思:本节课我们有哪些收获?【指导要点】回顾反思本节课重要知识,探究过程,并归纳方法和结论,并领悟其中所包含的数学思想与规律.1.布置作业:从教材“习题12.2”中选取.2.完成练习册中本课时的练习.本课时教学时应抓住以下重点:1.分类问题:教师让学生从实践入手,给定三角形三边,学生在薄纸上画,然后小组的同学看所画三角形是否重合,探索归纳、形成结论.2.教师可用多媒体展示现实生活中的实际例子:如桥梁、铁塔、自行车的三角架等,从中体验三角形的稳定性,认识“边边边”可作为三角形全等的判定依据.3.强调思路分析和书写规范.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3