ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:281KB ,
资源ID:791517      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-791517-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(宁夏六盘山高级中学高中数学选修1-1:2-1-1椭圆及其标准方程(教案) .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

宁夏六盘山高级中学高中数学选修1-1:2-1-1椭圆及其标准方程(教案) .doc

1、椭圆及其标准方程(第一课时)教案宁夏六盘山高级中学 杜英兵一教材及学情分析:本节课是普通高中课程标准实验教科书数学(人民教育出版社课程教材研究所,中学数学课程教材研究开发中心编著)选修11第二章第一节椭圆及其标准方程第一课时用一个平面去截一个对顶的圆锥,当平面与圆锥的轴夹角不同时,可以得到不同的截口曲线,它们分别是圆、椭圆、抛物线、双曲线,我们将这些曲线统称为圆锥曲线圆锥曲线的发现与研究始于古希腊当时人们从纯粹几何学的观点研究了这种与圆密切相关的曲线,它们的几何性质是圆的几何性质的自然推广17世纪初期,笛卡尔发明了坐标系,人们开始在坐标系的基础上,用代数方法研究圆锥曲线在这一章中,我们将继续用

2、坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用本节内容蕴含了许多重要的数学思

3、想方法,如:数形结合思想、化归思想等因此,教学时应重视体现数学的思想方法及价值根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持二教学目标:1知识与技能目标:理解椭圆的定义掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2过程与方法目标:经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力学会用坐标化的方法求动点轨迹方程对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3情感态度价值观目标:充分发挥学生在学习中

4、的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进形成研究氛围和合作意识重视知识的形成过程教学,让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰辛过程与创新的乐趣通过对椭圆定义的严密化,培养学生形成扎实严谨的科学作风通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美利用椭圆知识解决实际问题,使学生感受到数学的广泛应用性和知识的力量,增强学习数学的兴趣和信心三重、难点重点:椭圆的定义、椭圆的标准方程、坐标化的基本思想难点:椭圆标准方程的推导与化简,坐标法的应用关键:含有两个根式的等式化简四教法分析新课程倡导学生自主学习,要求教师成为学生学

5、习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程本节课采用让学生动手实践、自主探究、合作交流及教师启发引导的教学方法,按照“创设情境学生活动意义建构数学理论数学应用回顾反思巩固提高”的程序设计教学过程,并以多媒体手段辅助教学,使学生经历实践、观察、猜想、论证、交流、反思等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人五教学过程创设情境提出问题,学生活动体验数学,意义建构感知数学,数学理论建立数学,数学应用巩固新知,回顾反思归纳提炼,课后作业巩固提高(一)创设情境提出问题以折纸游戏创设问题情境请学生将课前统一发放的圆形纸片拿出来,并按如下

6、步骤进行操作:1将圆心记作点,然后在圆内任取一定点2在圆周上任取10个点,分别记作,将它们与圆心相连,得半径3折叠圆形纸片,使点与点重合,将折痕与半径的交点记作;然后再次折叠圆形纸片,使点与点重合,将折痕与半径的交点记作;依此类推,最后折叠圆形纸片,使点与点重合,将折痕与半径的交点记作4用平滑曲线顺次连接点,你有何发现?设计意图:使学生产生学习兴趣和探索欲望(二)学生活动体验数学1学生通过动手实践、观察,猜想轨迹为椭圆2展示学生成果3用几何画板展示动点生成轨迹的全过程,印证猜想4展示椭圆实际应用的幻灯片5导出新课:看来,大家对椭圆并不陌生,但细想想,我们对椭圆也说不上有多熟悉,除了“她”的名字

7、和容貌,我们对“她”的品性几乎还一无所知数学是一门严谨的科学,我们不能满足于直观感受、浅尝辄止,我们希望对椭圆有更深刻的认识,比如:椭圆上所有的点所具有的共同的几何特征是什么?椭圆的定义;能否用代数方法精确地刻画出这种共同的几何特征?椭圆的标准方程这就是我们这节课的重点内容设计意图:从折纸游戏中导出新课,明确研究课题(三)意义建构感知数学椭圆定义的初步生成学生每4人一组,合作探究,在刚才的折纸游戏中,折痕与对应半径的交点的共同属性,教师巡视指导如学生有困难,可按如下提示铺设认知阶梯:如何用数学语言表达点与定点重合点与定点关于折痕轴对称对称轴有什么特点折痕即对称轴是线段的垂直平分线线段垂直平分线

8、上的点有什么几何性质到线段两个端点距离相等,即动点与定点之间有什么关系请学生代表本小组交流探究结论与两个定点的距离之和等于常数的点的轨迹叫做椭圆(四)数学理论建立数学1椭圆定义的完善提出问题:要想用上面那句话作为椭圆的定义,要保证它足够严密、经得起推敲那么,这个常数可以是任意正实数吗?有什么限制条件吗?如何体现点在定圆的内部?引导学生回答:点在定圆的内部即点到圆心的距离小于圆的半径,也就是,从而意识到在“定义”中需要加上“常数”的限制继续深化问题:若常数=或常数,情况会发生什么变化?应用平面几何中的“三角形任意两边之和大于第三边”、“两点之间线段最短”为理论依据,得出结论:当常数=时,与两个定

9、点的距离之和等于常数的点的轨迹是线段;当常数时,与两个定点的距离之和等于常数的点的轨迹不存在请学生给出经过修改的椭圆定义,教师用幻灯片给出完善的椭圆定义,并介绍焦点、焦距的定义设计意图:使学生经历椭圆概念的生成和完善过程,提高其归纳概括能力,加深对椭圆本质的认识,并逐渐养成严谨的科学作风2椭圆的标准方程(1)回顾用坐标法求动点轨迹方程的一般步骤:建系设点、写出动点满足的几何约束条件、坐标化、化简、证明等价性(2)建立焦点在轴上的椭圆的标准方程建系设点:观察椭圆的几何特征,如何建系能使方程更简洁?利用椭圆的对称性特征以直线为轴,以线段的垂直平分线为轴,建立平面直角坐标系设焦距为,则设为椭圆上任意

10、一点,点与点的距离之和为动点满足的几何约束条件: 坐标化:化简:化简椭圆方程是本节课的难点,突破难点的方法是引导学生思考如何去根号移项后两次平方法分析的几何含义,令得到焦点在轴上的椭圆的标准方程为设计意图:进一步熟悉用坐标法求动点轨迹方程的方法掌握化简含根号等式的方法,提高运算能力,养成不怕困难的钻研精神感受数学的简洁美、对称美(3)建立焦点在轴上的椭圆的标准方程要建立焦点在轴上的椭圆的标准方程,又不想重复上述繁琐的化简过程,如何去做?此时要借助于化归思想,抓住图(1)与图(2)的联系即可化未知为已知,将已知的焦点在轴上的椭圆的标准方程转化为焦点在轴上的椭圆的标准方程只需将图(1)沿直线翻折或

11、将图(1)绕着原点按逆时针方向旋转即可转化成图(2),需将轴、轴的名称换为轴、轴或轴、轴 (1) (2)焦点在轴上的椭圆的标准方程为设计意图:体会数学中的化归思想,化未知为已知,避免重复劳动(4)辨析焦点分别在轴、轴上的椭圆的标准方程的异同点区别:要判断焦点在哪个轴上,只需比较与项分母的大小即可若项分母大,则焦点在轴上;若项分母大,则焦点在轴上反之亦然联系:它们都是二元二次方程,共同形式为 两种情况中都有(五)数学应用巩固新知例1:判断分别满足下列条件的动点M的轨迹是否为椭圆(1)到点和点的距离之和为6的点的轨迹;(是)(2)到点和点的距离之和为4的点的轨迹;(不是)(3)到点和点的距离之和为

12、6的点的轨迹;(是)设计意图:巩固椭圆定义例2:已知椭圆的两个焦点的坐标分别是,椭圆上一点M到的距离之和为4,求该椭圆的标准方程设计意图:学会用待定系数法求椭圆标准方程变式一:已知椭圆的两个焦点的坐标分别是,椭圆上一点M到的距离之和为4,求该椭圆的标准方程设计意图:提醒学生在解题时先要根据焦点位置判断使用哪种形式的椭圆标准方程变式二:已知椭圆的两个焦点分别是,椭圆经过点,求该椭圆的标准方程设计意图:使学生体会椭圆定义在解题中的重要作用(六)回顾反思归纳提炼1知识点:椭圆的定义及其标准方程2数学方法:用坐标化的方法求动点轨迹方程3数学思想:数形结合思想、化归思想(七)课后作业,巩固提高1必做题:课本49页习题22A组2,5(1)(2),6,92思考题:动圆与定圆 相内切且过定圆内的一个定点A(0,-2)求动圆圆心P的轨迹方程

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3