ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:38.50KB ,
资源ID:789741      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-789741-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021秋八年级数学上册 第3章 勾股定理3.1 勾股定理 1勾股定理教学设计(新版)苏科版.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021秋八年级数学上册 第3章 勾股定理3.1 勾股定理 1勾股定理教学设计(新版)苏科版.doc

1、勾股定理一、教学目标知识与技能:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。过程与方法:培养在实际生活中发现问题总结规律的意识和能力。情感态度与价值观:介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。二、教学重、难点1重点:勾股定理的内容及证明。2难点:勾股定理的证明。三、难点的突破方法:几何学的产生,源于人们对土地面积的测量需要。在古埃及,尼罗河每年要泛滥一次;洪水给两岸的田地带来了肥沃的淤积泥土,但也抹掉了田地之间的界限标志。水退了,人们要重新画出田地的界线,就必须再次丈量、计算田地的面积。几何学从一开始就与面积结下了不解之缘,面积很早

2、就成为人们认识几何图形性质与争鸣几何定理的工具。本节课采用拼图的方法,使学生利用面积相等对勾股定理进行证明。其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。四、例题的意图分析例1 (补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。例2 使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步让学生确信勾股定理的正确性。五、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语

3、言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。让学生画一个直角边为3cm和4cm的直角ABC,用刻度尺量出AB的长。以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。再画一个两直角边为5和12的直角ABC,用刻度尺量AB的长。你是否发现32+42与52

4、的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。对于任意的直角三角形也有这个性质吗?六、例、习题分析例1(补充)已知:在ABC中,C=90,A、B、C的对边为a、b、c。求证:a2b2=c2。分析:让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。拼成如图所示,其等量关系为:4S+S小正=S大正 4ab(ba)2=c2,化简可证。发挥学生的想象能力拼出不同的图形,进行证明。 勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。例2已

5、知:在ABC中,C=90,A、B、C的对边为a、b、c。求证:a2b2=c2。分析:左右两边的正方形边长相等,则两个正方形的面积相等。左边S=4abc2右边S=(a+b)2左边和右边面积相等,即4abc2=(a+b)2化简可证。七、课堂练习1勾股定理的具体内容是: 。2如图,直角ABC的主要性质是:C=90,(用几何语言表示)两锐角之间的关系: ;若D为斜边中点,则斜边中线 ;若B=30,则B的对边和斜边: ;三边之间的关系: 。3ABC的三边a、b、c,若满足b2= a2c2,则 =90; 若满足b2c2a2,则B是 角; 若满足b2c2a2,则B是 角。4根据如图所示,利用面积法证明勾股定

6、理。八、课后练习1已知在RtABC中,B=90,a、b、c是ABC的三边,则c= 。(已知a、b,求c)a= 。(已知b、c,求a)b= 。(已知a、c,求b)2如下表,表中所给的每行的三个数a、b、c,有abc,试根据表中已有数的规律,写出当a=19时,b,c的值,并把b、c用含a的代数式表示出来。3、4、532+42=525、12、1352+122=1327、24、2572+242=2529、40、4192+402=41219,b、c192+b2=c23在ABC中,BAC=120,AB=AC=cm,一动点P从B向C以每秒2cm的速度移动,问当P点移动多少秒时,PA与腰垂直。4已知:如图,在ABC中,AB=AC,D在CB的延长线上。求证:AD2AB2=BDCD若D在CB上,结论如何,试证明你的结论。参考答案课堂练习1略;2A+B=90;CD=AB;AC=AB;AC2+BC2=AB2。3B,钝角,锐角;4提示:因为S梯形ABCD = SABE+ SBCE+ SEDA,又因为S梯形ACDG=(a+b)2,SBCE= SEDA= ab,SABE=c2, (a+b)2=2 abc2。课后练习1c=;a=;b=2 ;则b=,c=;当a=19时,b=180,c=181。35秒或10秒。4提示:过A作AEBC于E。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3