1、专题检测(二十二) 导数与不等式大题专攻强化练1已知函数f(x)xex2xaln x,曲线yf(x)在点P(1,f(1)处的切线与直线x2y10垂直(1)求实数a的值;(2)求证:f(x)x22.解:(1)因为f(x)(x1)ex2,所以曲线yf(x)在点P(1,f(1)处的切线斜率kf(1)2e2a.而直线x2y10的斜率为,由题意可得(2e2a)1,解得a2e.(2)证明:由(1)知,f(x)xex2x2eln x.不等式f(x)x22可化为xex2x2eln xx220.设g(x)xex2x2eln xx22,则g(x)(x1)ex22x.记h(x)(x1)ex22x(x0),则h(x)
2、(x2)ex2,因为x0,所以x22,ex1,故(x2)ex2,又0,所以h(x)(x2)ex20,所以函数h(x)在(0,)上单调递增又h(1)2e22e20,所以当x(0,1)时,h(x)0,即g(x)0,即g(x)0,函数g(x)单调递增所以g(x)g(1)e22eln 112e1,显然e10,所以g(x)0,即xex2x2eln xx22,也就是f(x)x22.2设函数f(x)2ln xmx21.(1)讨论函数f(x)的单调性;(2)当f(x)有极值时,若存在x0,使得f(x0)m1成立,求实数m的取值范围解:(1)函数f(x)的定义域为(0,),f(x)2mx,当m0时,f(x)0,
3、f(x)在(0,)上单调递增;当m0时,令f(x)0,得0x,令f(x),f(x)在上单调递增,在上单调递减(2)由(1)知,当f(x)有极值时,m0,且f(x)在上单调递增,在上单调递减f(x)maxf2lnm1ln m,若存在x0,使得f(x0)m1成立,则f(x)maxm1.即ln mm1,ln mm10),g(x)10,g(x)在(0,)上单调递增,且g(1)0,0mx21恒成立解:(1)由题得f(x),当m0,即1m1时,f(x)0,f(x)在R上单调递减;当m0,即1m1时,令f(x)0得x1,令f(x)0得1mxg(x)max,由(1)可知,m(1,2)时,f(x)在1,m上单调
4、递减,f(x)minf(m),g(x)在1,m上单调递减,g(x)maxg(1),即证,记h(m)(1m0得1m,令h(m)0得m,即当x1,x21,m时,f(x1)x21恒成立4(2019武汉市调研测试)已知函数f(x)ex1aln(ax)a(a0)(1)当a1时,求曲线yf(x)在点(1,f(1)处的切线方程;(2)若关于x的不等式f(x)0恒成立,求实数a的取值范围解:(1)当a1时,f(x)ex1ln x1,则f(x)ex1,切线的斜率kf(1)e21,而f(1)e21,故切线方程为yf(1)f(1)(x1),即y(e21)(e21)(x1),整理得(e21)xy20.(2)由f(x)ex1aln xaln aa,得f(x)ex1,显然g(x)xex1a在(0,)上单调递增,又g(0)a0,则存在x0(0,a),使得g(x0)0,即x0e1a,ln aln x0x01.0xx0时,f(x)0,f(x)单调递减,x00,f(x)单调递增,f(x)在xx0处取得最小值f(x0)e1aln x0aln aa,即f(x0)aln x0aln aaaaa.由f(x)0恒成立知f(x0)0,即a0,x02ln x00.令h(x)x2ln x,则h(x)10得0x1,0x01.又 ax0e1在(0,1)上单调递增,0ae2,实数a的取值范围为(0,e2)