1、A 级:“四基”巩固训练一、选择题1某人将一枚质地均匀的硬币连掷了 10 次,正面朝上的情形出现了 6次若用 A 表示正面朝上这一事件,则事件 A 的()A概率为35B频率为35C频率为 6 D概率接近 0.6答案 B答案 解析 事件 A正面朝上的概率为12,因为试验次数较少,所以事件 A的频率为35,与概率值相差太大,并不接近故选 B.解析 2抛掷一枚质地均匀的硬币,如果连续抛掷 100 次,那么第 99 次出现正面朝上的概率为()A.199 B.1100 C.99100 D.12解析 第 99 次抛掷硬币出现的结果共有两种不同的情形,且这两种情形等可能发生,所求概率为 P12.解析 答案
2、D答案 3袋子中有四个小球,分别写有“东”“方”“骄”“子”四个字,从中任取一个球,取后放回,再取,直到取出“骄”字为止,用随机模拟的方法,估计第二次就停止的概率且用 1,2,3,4 表示取出的小球上分别写有“东”“方”“骄”“子”这四个字,每两个随机数为 1 组代表两次的结果,经随机模拟产生了 20 组随机数:23 14 12 31 3341 44 22 31 4312 13 24 42 3223 11 43 31 24则第二次停止的概率是()A.14 B.15 C.13 D.16解析 由 20 组随机数,知直到第二次停止的有:23,43,13,23,43,共 5组,故所求概率为 P14.故
3、选 A.解析 答案 A答案 4通过模拟实验,产生了 20 组随机数:6830 3013 7055 7430 77404422 7884 2604 3346 09526807 9706 5774 5725 65765929 9768 6071 9138 6754如果恰有三个数,在 1,2,3,4,5,6 中,则表示恰有三次击中目标,则四次射击中恰有三次击中目标的概率约为()A.14 B.13 C.15 D.16答案 A答案 解析 表示恰有三次击中目标的有:3013,2604,5725,6576,6754,共 5 组,随机数总共 20 组,故四次射击恰有三次击中目标的概率约为 52014.解析 5
4、一个样本量为 100 的样本,其数据的分组与各组的频数如下:组别0,10(10,20(20,30(30,40(40,50(50,60(60,70频数1213241516137则样本数据落在(10,40上的频率为()A0.13 B0.39 C0.52 D0.64答案 C答案 解析(10,40包含(10,20,(20,30,(30,40三部分所以数据在(10,40上的频数为 13241552,由 fn(A)nAn 可得频率为 0.52.故选 C.解析 二、填空题6某人进行打靶练习,共射击 10 次,其中有 2 次 10 环,3 次 9 环,4次 8 环,1 次脱靶在这次练习中,这个人中靶的频率是_
5、,中 9 环的频率是_答案 0.9 0.3答案 解析 打靶 10 次,9 次中靶,1 次脱靶,所以中靶的频率为 9100.9;其中有 3 次中 9 环,所以中 9 环的频率是 3100.3.解析 7已知随机事件 A 发生的频率是 0.02,事件 A 出现了 10 次,那么可能共进行了_次试验解析 设进行了 n 次试验,则有10n 0.02,解得 n500,故共进行了 500次试验解析 答案 500答案 8样本量为 200 的样本的频率分布直方图如图所示根据样本的频率分布直方图,计算样本数据落在6,10)内的频数为_,估计数据落在2,10)内的概率约为_答案 64 0.4答案 解析 样本数据落在
6、6,10)内的频数为 2000.08464,样本数据落在2,10)内的频率为(0.020.08)40.4,由频率估计概率,知所求概率约为 0.4.解析 三、解答题9用一台自动机床加工一批螺母,从中抽出 100 个逐个进行直径检验,结果如下:从这 100 个螺母中任意抽取一个,求:(1)事件 A(6.92d6.94)的频率;(2)事件 B(6.906.96)的频率;(4)事件 D(d6.89)的频率解(1)事件 A 的频率 f(A)1726100 0.43.(2)事件 B 的频率 f(B)101717261581000.93.(3)事件 C 的频率 f(C)22100 0.04.(4)事件 D
7、的频率 f(D)11000.01.答案 B 级:“四能”提升训练某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的 100 位顾客的相关数据,如下表所示一次购物量14 件58 件912 件1316 件17 件及以上顾客数(人)x3025y10结算时间(分钟/人)11.522.53已知这 100 位顾客中一次购物量超过 8 件的顾客占 55%.(1)确定 x,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过 2 分钟的概率(将频率视为概率)解(1)由已知,得25y1055,x3045,解得x15,y20.答案 该超市所有顾客一次购物的结算时间组成一个总体,所收集的 100位顾客一次购物的结算时间可视为总体的一个样本量为 100 的样本,顾客一次购物的结算时间的平均值可用样本的平均值估计,其估计值为1151.5302252.5203101001.9(分钟)(2)在这 100 位顾客中,一次购物的结算时间不超过 2 分钟的共有15302570(人),根据频率与概率的关系,估计一位顾客一次购物的结算时间不超过 2 分钟的概率为 701000.7.答案