ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:94.50KB ,
资源ID:785728      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-785728-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省常州市西夏墅中学高中数学教案选修2-2《1.4 导数在实际生活中的应用》.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省常州市西夏墅中学高中数学教案选修2-2《1.4 导数在实际生活中的应用》.doc

1、教学目标:1通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进学生全面认识数学的科学价值、应用价值和文化价值2通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高教学重点:如何建立实际问题的目标函数是教学的重点与难点教学过程:一、问题情境问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?二、新课引入导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题1几何方面的应用(面

2、积和体积等的最值)2物理方面的应用(功和功率等最值)3经济学方面的应用(利润方面最值)三、知识建构例1在边长为60 cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少? 说明1解应用题一般有四个要点步骤:设列解答 说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极值及端点值比较即可例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?Rh变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?说明1这种在定义域内仅有一个极值

3、的函数称单峰函数 说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为: S1列:列出函数关系式S2求:求函数的导数S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答例3在如图所示的电路中,已知电源的内阻为,电动势为外电阻为多大时,才能使电功率最大?最大电功率是多少?说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a8,b1,d3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)例5在经济学中

4、,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为(1)设,生产多少单位产品时,边际成本最低?(2)设,产品的单价,怎样的定价可使利润最大?四、课堂练习1将正数a分成两部分,使其立方和为最小,这两部分应分成_和_2在半径为R的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大3有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?4一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周lABBCCD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b 五、回顾反思(1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义(2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较(3)相当多有关最值的实际问题用导数方法解决较简单 六、课外作业课本第38页第1,2,3,4题

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3