ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:56.23KB ,
资源ID:785536      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-785536-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((全国统考)2022高考数学一轮复习 课时规范练50 双曲线(理含解析)北师大版.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

(全国统考)2022高考数学一轮复习 课时规范练50 双曲线(理含解析)北师大版.docx

1、课时规范练50双曲线基础巩固组1.(2020山东济南三模,6)已知双曲线C的方程为x216-y29=1,则下列说法错误的是()A.双曲线C的实轴长为8B.双曲线C的渐近线方程为y=34xC.双曲线C的焦点到渐近线的距离为3D.双曲线C上的点到焦点距离的最小值为942.设双曲线C:x28-y2m=1(m0)的左、右焦点分别为F1,F2,过F1的直线与双曲线C交于M,N两点,其中M在左支上,N在右支上.若F2MN=F2NM,则|MN|=()A.82B.8C.42D.43.(2019全国3,理10)双曲线C:x24-y22=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点.若|PO|=|PF|,

2、则PFO的面积为()A.324B.322C.22D.324.(2020全国3,理11)设双曲线C:x2a2-y2b2=1(a0,b0)的左、右焦点分别为F1,F2,离心率为5.P是C上一点,且F1PF2P.若PF1F2的面积为4,则a=()A.1B.2C.4D.85.(2020陕西安康高新中学检测)设F1,F2分别为双曲线C:x2a2-y2b2=1(ab0)的左、右焦点,A为C的左顶点,以F1F2为直径的圆与C的一条渐近线交于M,N两点,且MAN=135,则双曲线C的渐近线方程为()A.y=12xB.y=33xC.y=3xD.y=2x6.(2020山东泰安三模,8)如图,已知双曲线C:x2a2

3、-y2a+2=1的左、右焦点分别为F1,F2,M是C上位于第一象限内的一点,且直线F2M与y轴的正半轴交于点A,AMF1的内切圆在边MF1上的切点为N,若|MN|=2,则双曲线C的离心率为()A.52B.5C.2D.27.(2020全国2,理8,文9)设O为坐标原点,直线x=a与双曲线C:x2a2-y2b2=1(a0,b0)的两条渐近线分别交于D,E两点.若ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.328.(2020天津,7)设双曲线C的方程为x2a2-y2b2=1(a0,b0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的一条渐近线与l平行,另一条渐近线与

4、l垂直,则双曲线C的方程为()A.x24-y24=1B.x2-y24=1C.x24-y2=1D.x2-y2=19.(2020河北唐山模拟)过双曲线E:x2a2-y2b2=1(a0,b0)的左焦点F(-5,0),作圆(x-5)2+y2=4的切线,切点在双曲线E上,则E的离心率等于()A.25B.5C.53D.5210.(2020江苏,6)在平面直角坐标系xOy中,若双曲线x2a2-y25=1(a0)的一条渐近线方程为y=52x,则该双曲线的离心率是.11.(2020北京,12)已知双曲线C:x26-y23=1,则C的右焦点的坐标为;C的焦点到其渐近线的距离是.综合提升组12.(2020浙江,8)

5、已知点O(0,0),A(-2,0),B(2,0).设点P满足|PA|-|PB|=2,且P为函数y=34-x2图像上的点,则|OP|=()A.222B.4105C.7D.1013.已知双曲线C:x2a2-y2b2=1(a0,b0)的右焦点为F,以F为圆心,半实轴长为半径的圆与双曲线C的某一条渐近线交于两点P,Q,若OQ=3OP(其中O为原点),则双曲线C的离心率为()A.7B.5C.52D.7214.(2020全国1,理15)已知F为双曲线C:x2a2-y2b2=1(a0,b0)的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为.15.已知双曲线C:x2a

6、2-y2b2=1(a0,b0)的左、右焦点分别为F1,F2,若双曲线的渐近线上存在点P,使得|PF1|=2|PF2|,则双曲线C的离心率的取值范围是.创新应用组16.已知双曲线C:x24-y2=1,直线l:y=kx+m与双曲线C相交于A,B两点(A,B均异于左、右顶点),且以线段AB为直径的圆过双曲线C的左顶点D,则直线l所过定点为.参考答案课时规范练50双曲线1.D由题意a=4,b=3,则c=5,则双曲线C的实轴长为2a=8,故A正确;双曲线C的渐近线方程为y=bax=34x,故B正确;取焦点F(5,0),则焦点F到渐近线y=34x的距离d=|35|32+42=3,故C正确;双曲线C上的点到

7、焦点距离的最小值为c-a=5-4=1,故D错误.故选D.2.A由F2MN=F2NM可知,|F2M|=|F2N|.由双曲线定义可知,|MF2|-|MF1|=42,|NF1|-|NF2|=42,两式相加得|NF1|-|MF1|=|MN|=82.故选A.3.A由已知可得a=2,b=2,则c=a2+b2=6,F(6,0).|PO|=|PF|,xP=62.又P在C的一条渐近线上,不妨设在渐近线y=22x上,yP=2262=32.SPFO=12|OF|yP|=12632=324.故选A.4.A不妨设点P在第一象限,设|PF1|=m,|PF2|=n,则mn,依题意得,ca=5,12mn=4,m2+n2=4c

8、2,m-n=2a,解得a=1.5.D设以F1F2为直径的圆与渐近线y=bax相交于点M(x0,y0)(x00),由对称性得N(-x0,-y0).由y=bax,x2+y2=c2,解得M(a,b),N(-a,-b).A(-a,0),NAF2=90,又MAN=135,MAF2=45,b=2a,渐近线方程为y=2x.故选D.6.D设AMF1的内切圆在边AF1,AM的切点分别为E,G,则|AE|=|AG|,|EF1|=|F1N|,|MN|=|MG|.|MF1|-|MF2|=2a,则|EF1|+|MG|-|MF2|=2a,由对称性可知|AF1|=|AF2|,化简可得|MN|=a,则a=2,a+2=4.故双

9、曲线C的离心率为22+42=2.7.B由题意可知,双曲线的渐近线方程为y=bax.因为直线x=a与双曲线的渐近线分别交于D,E两点,所以不妨令D(a,-b),E(a,b),所以|DE|=2b.所以SODE=122ba=ab=8.所以c2=a2+b22ab=16,当且仅当a=b=22时取等号.所以c4,所以2c8.所以双曲线C的焦距的最小值为8.故选B.8.D双曲线x2a2-y2b2=1的渐近线方程为y=bax,y2=4x的焦点坐标为(1,0),直线l方程为yb+x1=1,即y=-bx+b,-b=-ba且-bba=-1,a=1,b=1.故选D.9.B设圆的圆心为G,由圆的方程(x-5)2+y2=

10、4,知圆心坐标为G(5,0),半径R=2,则|FG|=25.设切点为P,则GPFP,|PG|=2,|PF|=2+2a.由|PF|2+|PG|2=|FG|2,即(2+2a)2+4=20,即(2+2a)2=16,得2+2a=4,a=1.又因为c=5,所以双曲线的离心率e=ca=5.故选B.10.32本题考查双曲线的渐近线方程.由双曲线x2a2-y25=1(a0),得其渐近线方程为y=5ax,又因为其中一条为y=52x,所以a=2.所以c2=a2+b2=4+5=9,所以c=3.则离心率e=ca=32.11.(3,0)3在双曲线C中,a=6,b=3,则c=a2+b2=3,则双曲线C的右焦点坐标为(3,

11、0).因为双曲线C的渐近线方程为y=22x,即x2y=0,所以双曲线C的焦点到其渐近线的距离为d=312+2=3.12.D由条件可知点P在以A,B为焦点的双曲线的右支上,并且c=2,a=1,所以b2=3,所以双曲线方程为x2-y23=1(x0).又点P为函数y=34-x2图像上的点,联立方程x2-y23=1(x0),y=34-x2,解得x2=134,y2=274.所以|OP|=x2+y2=10.故选D.13.D设双曲线的一条渐近线方程为y=bax,H为PQ的中点,可得FHPQ,由F(c,0)到渐近线的距离为|FH|=d=bca2+b2=b,|PH|=a2-b2.又OQ=3OP,|OH|=c2-

12、b2=2a2-b2,即7a2=4c2,e=72,故选D.14.2由题意可得A(a,0),F(c,0),其中c=a2+b2.由BF垂直于x轴可得点B的横坐标为c,代入双曲线方程可得点B的坐标为Bc,b2a.AB的斜率为3,Bc,b2a.kAB=b2ac-a=b2a(c-a)=c2-a2a(c-a)=c+aa=e+1=3,e=2.15.1,53设P(x,y),则(x+c)2+y2=4(x-c)2+y2,化简得x-53c2+y2=169c2,所以点P在以M5c3,0为圆心,43c为半径的圆上.又因为点P在双曲线的渐近线bxay=0上,所以渐近线与圆M有公共点,所以53bcb2+a243c,解得5b4

13、c,即ca53,所以双曲线离心率的取值范围是1,53.16.-103,0设点A(x1,y1),B(x2,y2),由y=kx+m,x24-y2=1,得(1-4k2)x2-8kmx-4(m2+1)=0,所以=64k2m2+16(1-4k2)(m2+1)0,x1+x2=8km1-4k2,x1x2=-4(m2+1)1-4k2,所以y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=m2-4k21-4k2.因为以线段AB为直径的圆过双曲线C的左顶点D(-2,0),所以kADkBD=-1,即y1x1+2y2x2+2=-1,所以y1y2+x1x2+2(x1+x2)+4=0,即m2-4k21-4k2+-4(m2+1)1-4k2+16km1-4k2+4=0,所以3m2-16km+20k2=0,解得m=2k或m=10k3.当m=2k时,直线l的方程为y=k(x+2),此时直线l过定点(-2,0),与已知矛盾;当m=10k3时,直线l的方程为y=kx+103,此时直线l过定点-103,0,经检验符合题意.故直线l过定点-103,0.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3